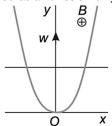
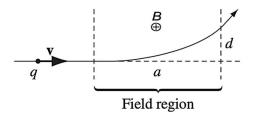

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	1:	IMSc MATHS & COMPUTING		SEMEST SESSION		
TIME:		SUBJ 3 Hours	ECT: PH109 PHYSICS-I	FULL M	ARKS	: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 						
Q.1(a)	(n ₂ =		value for a glass slab ($n_1 = 1.5$) immersed in this angle the reflected and refracted r		[5]	CO 4,2,4
Q.1(b)					[5]	4,1,4
Q.2(a)		t is an "inertial observer"? Derive rvers?	e the Lorentz transformations connecting 2	inertial	[5]	5,5,5
Q.2(b)	Defin ray p and	ne "proper length" and "proper to particle (proper mean life time, a travels at 0.9c, calculate the di	time" in the context of special relativity. A = 1 micro-sec) is created in the upper atmo- stance it travels before decay for 2 cases and a measured in the rest frame of the part	osphere : (a) as	[5]	5,1,5

- Q.3(a) Define Binding energy of a nucleus? A nucleus with mass number A = 235 splits into two [5] 3,1,3 nuclei whose mass numbers are in the ratio 1:2. What is the ratio of their radii?
- Q.3(b) Define Isotopes, Isobars and Isotones? Using the Semi-empirical Mass formula below, [5] 3,5,3 determine the most stable Isobar for a nucleus having odd mass number (A). Take the coefficient values as: $a_1 = 14.1 \text{ MeV}$, $a_2 = 13.0 \text{ MeV}$, $a_3 = 0.595 \text{ MeV}$, $a_4 = 19.0 \text{ MeV}$. BE(A, Z) = $a_1 A - a_2 A^{2/3} - a_3 Z^2 A^{-1/3} - a_4 (A - 2Z)^2 A^{-1}$
- Q.4(a) Define Gauss law of electro-statics? Apply Gauss law to calculate the electric field at a [5] 1,3,1 distance z from an infinitely long straight wire carrying a uniform linear charge density $\overline{\lambda}$.


Q.4(b) Define the electric displacement vector (\overrightarrow{D}) for a linear, homogeneous, isotropic [5] 1,1,1 dielectric. A long straight wire carrying a uniform linear charge density λ , is surrounded by dielectric insulation out to radius a. Find the electric displacement vector.


Gaussian surface

Q.5(a) Define Faraday's law of electro-magnetism. A wire bent as a parbola $y = bx^2$ (where b [5] 2,1,2

is a constant) is located in a uniform magnetic field B, which is perpendicular to the XY plane and pointing into this page. At the moment t = 0, a metal rod starts sliding translationally from the parabola apex with a constant acceleration \overline{W} . Find the induced emf in the loop thus formed as a function of y.

Q.5(b) Define Lorentz force on a charged particle due to an electro-magnetic field. A particle [5] 2,1,2 of charge q enters a region of uniform magnetic field $\stackrel{[B]}{\models}$ (pointing into the page). The field deflects the particle a distance **d** above the original line of flight, as shown in the figure below. Is the charge positive or negative? In terms of a, d, B and q, find the momentum of the particle.

:::::22/07/2023:::::