BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC S PHYSICS S	EMESTER ESSION :	ESTER : II ION : SP/2023	
TIME:	SUBJECT: PH106 WAVES AND OPTICS 3 Hours F	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Q.1(b)	Explain the theory of the superposition of two collinear oscillations having sa frequency but different amplitudes. Sketch and explain the Lissajous figures with equal and four unequal frequenci qualitatively.	me [5] es, [5]	CO 1	BL 1
Q.2(a) Q.2(b)	Develop the equation of velocity of longitudinal waves in a fluid enclosed in a profinite length. The fundamental frequency of a closed organ pipe is of frequency 60 Hz. What we be the fundamental frequency of an open organ pipe of same length?	ipe [7] will [3]	2	6
Q.3(a) Q.3(b)	Devise an expression for the wavelength of the incident monochromatic light observing from the reflected side of Newton's rings arrangement. In a Newton's rings arrangement, if a plano-convex lens of radius 100 cm is plac on an optically flat glass plate and is illuminated by monochromatic light. T diameter of the 10th dark ring, observed from the reflected side, is 0.72 c Calculate the wavelength of the light used.	by [7] ced [3] fhe cm.	3	4
Q.4(a) Q.4(b)	Illustrate the intensity pattern of the single slit Fraunhofer diffraction with suital expressions and neat diagrams (without derivation). Give the idea of forming fringes using Michelson Interferometer.	ble [6] [4]	4	4
Q.5(a) Q.5(b)	Summarize three methods of obtaining polarized light. State and explain Malus law.	[6] [4]	5	2

:::::18/07/2023:::::