BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: II
BRANCH: PHYSICS SESSION: SP/2023

SUBJECT: PH102 ELECTRICITY & MAGNETISM

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Show that the electric field just outside a conductor has a magnitude σ/ϵ_0 , where σ is the local surface charge density.	[5]	CO 1	BL 2
Q.1(b)	Prove electric field at a point is defined as the gradient of the potential at that point.	[5]	1	5
Q.2(a)	Find the electrostatic energy stored in the space surrounding a uniformly charged, spherical shell of radius R carrying a total charge Q.	[5]	2	1
Q.2(b)	Explain why the introduction of a dielectric medium between the plates of a capacitor changes its capacitance.	[5]	2	2
Q.3(a)	State Ampere' circuital law. Apply the law to find the magnetic field due to a long current carrying solenoid at an internal and external points.	[5]	3	3
Q.3(b)	Find an expression for torque on a current loop placed in a uniform magnetic field.	[5]	3	1
Q.4(a) Q.4(b)	Summarize all four Maxwell's equation in integral and differential form. Find an expression for the impedance in a parallel LCR circuit.	[5] [5]	4	2

Q.5(a) Determine the power across the impedance (2+j3) ohm by using Thevenin's theorem. [5] 5 1

Q.5(b) Find the Norton's equivalent circuit between the terminals A and B [5] 5

:::::20/07/2023:::::