BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
(MID SEMESTER EXAMINATION SP/2023)

CLASS:	B. TECH
BRANCH:	PRODUCTION ENGINEERING
	SUBJECT: PE319 MATERIAL DEFORMATION PROCESSES

SEMESTER : VI
SESSION : SP/2023

TIME:
02 Hours
FULL MARKS: 25

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

		CO	BL	
Q.1(a)	With neat sketch draw the state of stress at deformation zone for bulk forming processes?	$[2]$	1	2
Q.1(b)	Discuss the emerging forming process which is a combination of conventional forging and	$[3]$	4	2

Q.2(a) State the dies used in hydrodynamic wire drawing along with its characteristics?
[2] 2
Q.2(b) What are the roles of water and advantages of hydro-forming process? Elaborate the steps
[3] 32 of tube hydro-forming process.
Q.3(a) Derive the equations of motion for a solid body under static equilibrium.
[3] 23
Q.3(b) State the conditions for which the equations of motion are reduced to the equilibrium equations
Q.4(a) Define uniform strain. Prove that if a strain-hardening metal obeys Hollomon true stressstrain relation, then uniform strain equals to the strain hardening exponent (n)
Q.4(b) The state of stress at a point given by the stress tensor is
[3] 24

$$
\left[\begin{array}{ccc}
10 & 6 & 5 \\
6 & 12 & 8 \\
5 & 8 & 6
\end{array}\right]
$$

Calculate the normal and shear stress components on a plane having direction cosines $1 / \sqrt{2}, 1 / \sqrt{2}$ and 0
Q.5(a) Derive the relationship between engineering stress and true stress.
[2] 23
Q.5(b) The displacement u_{1}, u_{2} and u_{3} are given as: $u_{1}=\left(2 x_{1}{ }^{2}+6 x_{1}+9 x_{2}{ }^{3}\right) \times 10^{-6} \mathrm{~m}$,
[3] 24 $u_{2}=\left(9 / x_{1}+5 x_{2}+2 x_{1}^{2} x_{2}\right) \times 10^{-6} \mathrm{~m}$ and $u_{3}=0$, Evaluate the strains $\varepsilon_{11}, \varepsilon_{22}$ and γ_{12} at the point $(5,3)$?

