BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BRANCH	SUBJECT: PE319 MATERIAL DEFORMATION PROCESSES		ER : VI I : SP/2023	
TIME:			MARKS: 25	
 Atten The n 	CTIONS: Juestion paper contains 5 questions each of 5 marks and total 25 marks. Inpt all questions. nissing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates			
Q.1(a) Q.1(b)	With neat sketch draw the state of stress at deformation zone for bulk forming processes? Discuss the emerging forming process which is a combination of conventional forging and casting process?	[2] [3]	CO 1 4	BL 2 2
Q.2(a) Q.2(b)	State the dies used in hydrodynamic wire drawing along with its characteristics? What are the roles of water and advantages of hydro-forming process? Elaborate the steps of tube hydro-forming process.	[2] [3]	2 3	2 2
Q.3(a) Q.3(b)	Derive the equations of motion for a solid body under static equilibrium. State the conditions for which the equations of motion are reduced to the equilibrium equations	[3] [2]	2 2	3 2
Q.4(a)	Define uniform strain. Prove that if a strain-hardening metal obeys Hollomon true stress-	[2]	2	3
Q.4(b)	strain relation, then uniform strain equals to the strain hardening exponent (<i>n</i>) The state of stress at a point given by the stress tensor is $ \begin{bmatrix} 10 & 6 & 5\\ 6 & 12 & 8\\ 5 & 8 & 6 \end{bmatrix} $	[3]	2	4
	Calculate the normal and shear stress components on a plane having direction cosines $1/\sqrt{2}$, $1/\sqrt{2}$ and 0			
0.5(a)	Derive the relationship between engineering stress and true stress	[2]	2	z

Q.5(a) Derive the relationship between engineering stress and true stress. Q.5(b) The displacement u_1 , u_2 and u_3 are given as: $u_1 = (2x_1^2 + 6x_1 + 9x_2^3) \times 10^{-6}$ m, $u_2 = (9/x_1 + 5x_2 + 2x_1^2x_2) \times 10^{-6}$ m and $u_3 = 0$, Evaluate the strains ε_{11} , ε_{22} and γ_{12} at the point (5,3)? $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix}$

:::::24/02/2023:::::M