CLASS: BRANCH	BTe H: Pro	ch duction				F TECHI AESTER		(, MESRA IATION)	A, RANC	HI		STER : ON: SI		23
TIME:	3 H	ours	SU	BJECT:	PE314 S	STATIST	ICAL QU	JALITY C	ONTRO	<u> </u>	FULL	MARK	(S: 50)
2. Atter 3. The <i>4</i> . Befo	questio mpt all missing re atter	n paper questio data, if npting t	ns. any, m he ques	ay be as stion pa	ssumed per, be	suitably sure tha	'. at you h	ks and to have got the car	the cor	rect que	estion p			
Q.1(a)	Which	measure	e of cen	tral ten	dency a	nd dispe	ersion w	ill you si	uggest fo	or a sam	ple of	[2]	со	BL
0.441					uations?		2.5.6			c 1.		101		
Q.1(b) Q.1(c)	Why is deviat	there a	a differe populati	ence bet	tween t	he form	ula useo	ne optim d for cal he stand	lculating	the sta	andard	[3] [5]		
			Xi	3	5		7	8	9					
			fi	2	3		2	2	1					
Q.2(a)	When	dealing or both	with a \ X-bar ar	/ariable	quality	charact	eristic,	Why is i	t usually	/ necess	ary to	[2]		
Q.2(b)	Explaiı standa	n proces	s capabi ition of	ility. Wł 0.9. Tł	nat does ne produ			cess has ication c				[2]		
Q.2(c)	Parts r streng	nanufac	tured by Ten sar	an inje nples of	ction mo f five pa			are subje ollected,				[6]		
	Numbe		2	3	4	5	6	7	8	9	10			
	x1 x2	83 81.2	88.6 78.3	85.7 75.8	80.8 74.4	83.4 78.4	75.3 79.9	74.5 78	79.2 84.4	80.5 86.2	75.7 75.2			
	x3	78.7	78.8	84.3	82.5	82.6	87.3	80.8	81.5	76.2	71.1			
	x4	75.7	71	75.2	74.1	78.2	89.7	73.4	86 74 F	64.1	82.1			
	x5	77	84.2	81	75.7	78.9	81.8	79.7	74.5	80.2	74.3			

ii) Compute control limits for the S chart.

For n=5: A= 1.342, A2=0.577, A3=1.427, B3=0, B4=2.089, B5=0, B6=1.964, c4=0.94, D1=0, D2=4.918, D3=0, D4=2.114, d3=0.864

- Consider a single sampling plan N = 1500, n = 200, c = 3. Construct the OC curve. If [5]Q.3(a) the acceptable quality level is 0.05% nonconforming and the limiting quality level is 6% nonconforming, describe the protection offered by the plan at these quality levels.
- Q.3(b) Consider a double sampling plan given by the following parameters: N=2200, n1 = 60, [5] c1 = 0, r1 - 5, n2 = 100, c2 = 6, r2 = 7. Find the probability of accepting lots that are 3% non-conforming. What is the probability of accepting a lot on the first sample? What is the probability of making a decision on the first sample?
- Q.4(a) The specifications of a steel shaft are 6.40 ± 0.10 mm. The device sometimes fails [5] when the shaft exceeds the specification. When failure occurs, repair or replacement is necessary at an average cost of Rs.95.
 - i) What is the loss coefficient k?
 - ii) What is the loss function equation?
 - iii) What is the loss at 6.45 mm?

CO BL

- [3] [5]
- Q.1(c) rd up
- Q.2(a) [2] to
- Q.2(b) [2] l a he
- Q.2(c) ve [6] ve

umber	1	2	3	4	5	6	7	8	9	10
	83	88.6	85.7	80.8	83.4	75.3	74.5	79.2	80.5	75.7
	81.2	78.3	75.8	74.4	78.4	79.9	78	84.4	86.2	75.2
	78.7	78.8	84.3	82.5	82.6	87.3	80.8	81.5	76.2	71.1
Ļ	75.7	71	75.2	74.1	78.2	89.7	73.4	86	64.1	82.1
i	77	84.2	81	75.7	78.9	81.8	79.7	74.5	80.2	74.3

i) Compute control limits for the X-bar & R chart.

Q.4(b) The table shows you the L8 OA for predicting the weld hardness of Submerged Arc [5] Welding (SAW) where the quality characteristic is larger-than-the-better type. In this experiment, three factors having two levels are taken that affect the weld hardness.

Experiment	Fact	Weld			
No.	Α	В	Hardness		
1	1	1	51		
2	1	2	50		
3	2	1	43		
4	2	2	46		

- Calculate the S/N ratio for each experiment. i)
- ii) Draw the main effects plot for S/N ratios.
- iii) Determine the optimal parameter setting that enhances hardness.
- Q.5(a) Define Quality circle. Explain its implementation process.
- [3] [3] Q.5(b) What is a 'Six Sigma'? Why is it assumed that the Six Sigma process would produce about 3.4 ppm defective in place of 0.002 ppm defective?
- Q.5(c) What is ISO? What is the main purpose of ISO 9000? List the ISO 9000 series of [4] standards.

:::::26/04/2023 M:::::