BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	B.TECH. CIVIL/ECE		SEMESTER : IV SESSION : SP/2023
		SUBJECT: PE227 ENGINEERING MATERIALS	
TIME:	3 Hours		FULL MARKS: 50
INSTRUCT	IONS:		
1. The qu	estion paper cor	ntains 5 questions each of 10 marks and total 50 ma	rks.
2. Attemp	t all questions.	y may be assumed suitably	
4. Before	attempting the o	question paper, be sure that you have got the corre	ect question paper.
5. Tables/	Data hand book	Graph paper etc. to be supplied to the candidates i	in the examination hall.

			CO	BL
Q.1(a)	Illustrate the unit cells of the 7 primitive crystal systems in terms of the lattice	[5]	1	2
	parameters (edge lengths and interaxial angles) with neat sketches.			
Q.1(b)	 Differentiate between edge and screw dislocation. 	[3+2]	2	3
	II. The accompanying figure shows a unit cell for a hypothetical metal. To which			

- Q.2(a) A copper-nickel alloy of composition 70 wt% Ni-30 wt% Cu is slowly heated from a [5] 2 4 temperature of 1300°C.
 - 1. At what temperature does the first liquid phase form?
 - 2. What is the composition of this liquid phase?
 - 3. At what temperature does complete melting of the alloy occur?
 - 4. What is the composition of the last solid remaining prior to complete melting?

	Composition (wt% Ni)						
	1500 Liquid 1453°C						
	1100 1085°C						
	(Cu) Composition (wt% Ni)						
Q.2(b)	 I. List some applications of (i) titanium alloys and (ii) copper alloys. II. List the limitations of Fe-C equilibrium phase diagram. III. Differentiate between time-temperature-transformation diagram and continuous cooling transformation diagram of eutectoid steel. 	[2] [1] [2]	2	2			
Q.3(a)	 I. Show the crystal structure of layered silicates. II. State the properties, applications and examples of super conducting ceramic materials. 	[2+3]	3	3			
Q.3(b)	What are the different forming methods of glass products? Describe any one of them with suitable diagram.	[5]	3	2			
Q.4(a)	Compare thermoplastic, thermosetting polymer and elastomer based on their properties. Show various kinds of defects in polymer crystallite with neat sketch.	[2+3]	4	3			
Q.4(b)	Discuss various types of reinforcement in ceramic materials			2			
Q.5(a)	What are the factors which determine the fatigue and creep in materials?	[2+3]	5	2			
Q.5(b)	Define Hardness of a material. How can the hardness of a material be measured?	[5]	5	1			

:::::01/05/2023:::::M