BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)					
CLASS: BRANCH		SEMESTER : II SESSION : SP/2023		23	
TIME:	SUBJECT: ME592 ADVANCED HEAT TRANSFER 3 Hours	FULL MARKS: 50			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a)	Consider a two dimensional steady state heat conduction equation with no generation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		[5]	CO 1	BL BTM
Q.1(b)	The three sides of the rectangular plate are subjected to a constant temperative boundary condition and the forth side has $T = T_m \sin\left(\frac{\pi x}{w}\right) + T_1$. The notations have its usual meaning. Determine the temperature distribution in the plate. A steel ball bearing (k = 50 W/mK, α = 1.3 x 10-5 m ² /s) having a diameter of 40 m heated to a temperature 650 °C and then quenched in a tank of oil at 55 °C. I heat transfer coefficient between the ball bearing oil is 300 W/m ² K, Deter duration of time the ball must remain in oil to reach 200 °C.	used nm is f the	[5]	1	втм
Q.2(a) Q.2(b)	Derive energy integral equation for a boundary layer flow. Describe the numerical technique to solve boundary layer equation.		[5] [5]	2 2	BTM BTH
Q.3(a) Q.3(b)	Explain mixing length turbulent model. Explain analogy solution for boundary flow. What is Reynolds analogy?		[5] [5]	3 3	BTL BTL
Q.4(a)	Derive Stefan-Boltzmann's law and Wien's displacement law from Plank's la	w of	[5]	4	BTM
Q.4(b)	radiation. A truncated cone of height 10 cm and has bottom and top diameters of 8 cm and 16 cm respectively. The bottom surface intercepts 15 percent of radiation leaving the top surface. Determine the shape factor between (i) top surface and the side surface (F_{23}) and (ii) the side surface with itself (F_{33}).	7	[5]	4	ВТМ
Q.5(a)	What are the factors responsible for attenuation of radiation intensity participating medium? Write down the expression for it.	in a	[5]	5	BTH

Q.5(b) Derive the general expression for radiative transport equation in a participating [5] 5 BTM medium.

:::::27/04/2023:::::E