BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	ME SESS SUBJECT: ME579 DESIGN AND ANALYSIS OF HEAT EXCHANGERS		MESTER : II SSION : SP/2023 ILL MARKS: 50		
TIME:					
 Atten The n Befor 	TIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks. hpt all questions. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct ques s/Data hand book/Graph paper etc. to be supplied to the candidates in the e			all.	
Q.1(a) Q.1(b)	Explain the classification of the heat exchanger according to the transfer proce Explain the working principle of Gasketed plate and double pipe heat exchange		[5] [5]	CO 1 1	BL 1 1
Q.2(a)	What is the significance of velocity boundary layer and thermal boundary layer fluid flows with uniform velocity and temperature (U_{α} and T_{α}) over a uniformly (with temperature T_{b}) flat plate?		[5]	2	2
Q.2(b)	Explain the common causes of fouling in heat exchangers.		[5]	1	1
Q.3(a) Q.3(b)	Derive the expression of LMTD of counter-flow heat exchanger. A counter flow concentric tube heat exchanger is used to cool engine oil (c_{oil} = 2130 J/kg.K) from 160°C to 60°C with water(c_{water} = 4186 J/kg.K), available at 25°C as the cooling medium. The flow rate of cooling water through the inner tube of 0.5 m diameter is 2 kg/s while the flow rate of oil through the outer annulus 0.D = 0.7 m is also 2 kg/s. If the value of the overall heat transfer coefficient is 250 W/m ² .K. How ong must the heat exchanger be to meet its cooling requirement?		[5] [5]	2 5	4 4
Q.4(a) Q.4(b)	Derive the expression of effectiveness for parallel-flow heat exchanger. An air blast cooler with a surface area for heat transfer of 600 m ² and an overal transfer coefficient of 60 W/(m ² .K) is fed with the following streams: Air: M_c = 12 kg/s, c_{pc} = 1050 J/(kg.K), $T_{c,in}$ = 20°C Oil: M_h = 3 kg/s, c_{ph} = 2000 J/(kg.K), $T_{h,in}$ = 80°C Calculate (a) the stream exit temperatures (b) F-values and (c) effectiveness for two-pass shell and tube exchanger.		[4] [6]	2 5	4 4
Q.5(a) Q.5(b)	What are the design steps for designing a heat exchanger? Consider the problem: Consider the problem:		[3] [7]	1 5	1 4
	Minimize $f = 2(x_2 - x_1^2)^2 + (1 - x_1)^2$ If the base simplex is defined by the vertices $X_1 = \begin{cases} 0 \\ 0 \end{cases}, X_2 = \begin{cases} 1 \\ 0 \end{cases}, X_3 = \begin{cases} 0 \\ 1 \end{cases}$				

Find a sequence of two improved vectors after iteration 2 using reflection, expansion, and/or contraction.

Assume α =1, β = 0.1, γ = 2, and converge when $\epsilon \approx 0.2$.

:::::26/04/2023:::::E

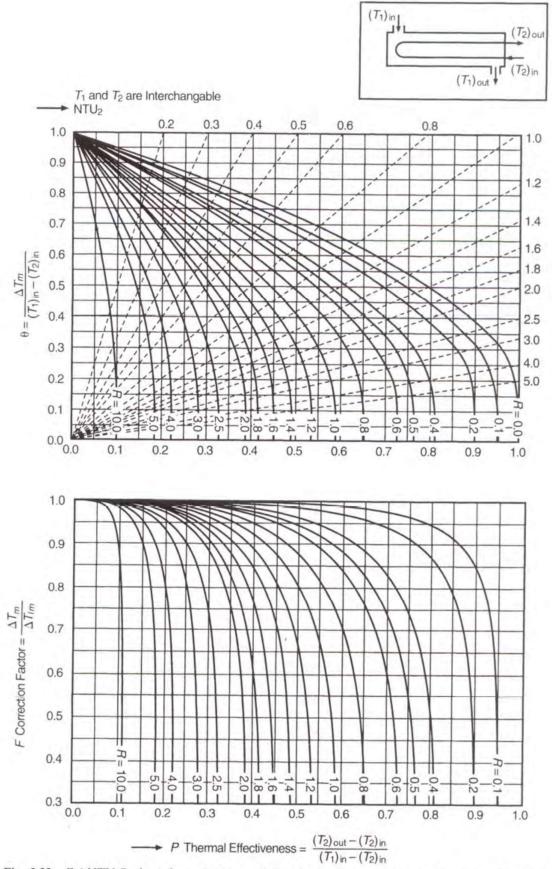


Fig. 3.22 $F-\theta$ -NTU-P chart for a two-pass shell-and-tube heat exchanger. The same chart can be use 4, 6, 8... passes. (From Taborek, 1983. With permission.)