BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	MTECH MECH.		SEMES SESSIO	TER : II N : SP/2023
TIME:	3 Hours	SUBJECT: ME525R1 ROBOTICS MANIPULATOR DESIGN	FULL M	ARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
			со	BL

Q.1(a) For given manipulator (see Fig. Q.1 (a)), assign appropriate frames for the [5] 1 Write Denavit-Hartenberg (DH) representation. Fill out the DH parameters table and write an equation in terms of a matrices that shows how ${}_{3}^{0}T$ can be calculated.

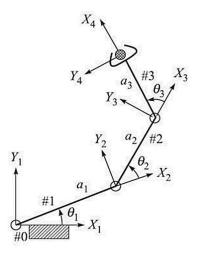
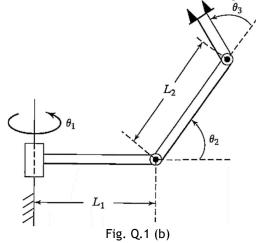
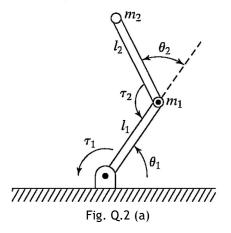
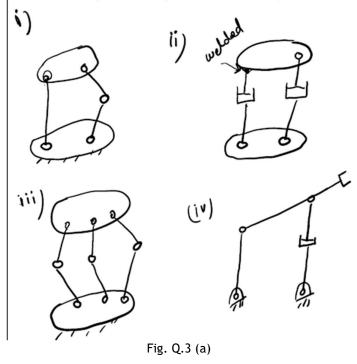



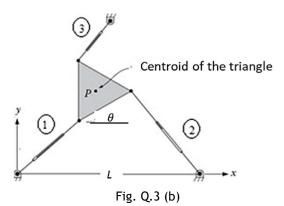
Fig. Q.1 (a)


Q.1(b) Derive the inverse kinematics of thee arm shown in Fig. Q.1 (b).

[5] 1 Derive


PTO

Q.2(a) Derive equation of motion of a 2R planar manipulator shown in Fig. Q.2 (a). [10] 2 Derive Assume all mass exists as a point mass at a distal end of each link.



Q.3(a) Write the name of the planar manipulators shown in Fig. Q.3 (a).

Q.3(b) Fig. Q.3 (b) shows a planar robot with its associated dimensions and [6] reference frame. Calculate the length of each prismatic actuator for Px, Py, θ . Assume suitable parameters such as side of the triangle, distance between origins of frames (1, 2, and 3), etc.

PTO

Q.4(a) Fig. Q.4 (a) shows a two-link planar arm with rotary joints. For this arm, [5] 4 the second link is half as long as the first—that is, $l_1 = 2l_2$. The joint range limits in degrees are

 $0^0 \le \theta_1 \le 180^0$ and $-90^0 \le \theta_2 \le 180^0$. Draw the approximate reachable workspace (an area) of the tip of link 2.

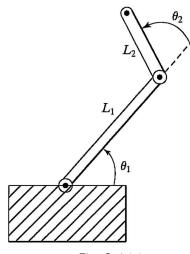
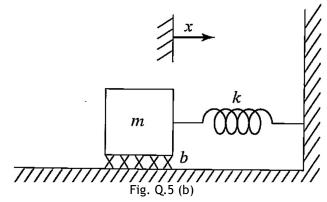



Fig. Q.4 (a)Q.4(b) Write a short notes on repeatability and accuracy.[5] 4 Write

- Q.5(a) A single-link robot with a rotary joint is motionless at $\theta = 15$ degrees. It is [5] desired to move the joint in a smooth manner to $\theta = 75$ degrees in 3 seconds. Find the coefficients of a cubic that accomplishes this motion and brings the manipulator to rest at the goal. Plot the position, velocity, and acceleration of the joint as a function of time.
- Q.5(b) Determine the motion of the system in Fig. Q. 5(b) if parameter values are [5] m=1, b=5, and k=6 and the block (initially at rest) is released from the position x = -1.

:::::28/04/2023 E:::::

5 Find

5 Determine

Draw