BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH & PRE_PHD SEMESTER: IInd / NA BRANCH: Mechanical SESSION: SP/2023

SUBJECT: ME502 ADVANCED COMPUTER AIDED DESIGN

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Show that transformation matrix for a reflection about the line Y = +X is equivalent to a reflection relative to the X-axis, followed by a counter clockwise rotation of 90° . Explain IGES, PDES and DXF data exchange format.	[5]	CO CO3	BL L3
Q.1(b)		[5]	CO2	L2
Q.2(a) Q.2(b)	Explain in detail the difference between the surface modelling and solid modelling. Explain the constructive solid geometry (C-rep) and Boundary representation (B-rep) with examples.	[5] [5]	CO1 CO2	L1 L2
Q.3(a) Q.3(b)	Explain NURBS. Derive an expression of Bezier curve in terms of blending functions. Also draw the curves of blending functions.	[5] [5]	CO2 CO3	L2 L3
Q.4(a) Q.4(b)	Explain the principles and approaches of collaborative design. Explain briefly the steps involved in designing of animation sequences with examples.	[5] [5]	CO2 CO3	L2 L2
Q.5(a)	Determine the diameter of a solid steel shaft to transmit 20 kW at 200 rpm. The ultimate shear stress for the steel may be taken as 360 MPa and a factor of safety as 8. If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter when the ratio of inside to outside diameters is 0.5.	[5]	CO3	L3
Q.5(b)	Write a program for the problem 5(a).	[5]	CO3	L3

:::::24/04/2023:::::E