BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BTECH SEMESTER: VI BRANCH: MECHANICAL SESSION: SP2023

SUBJECT: ME367 INDUSTRIAL TRIBOLOGY

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) Q.1(b)	Describe the Mean Peak Spacing roughness parameter. Distinguish between a Physiosorbed Layer and Chemisorbed Layer.	[2] [3]	CO 01 01	BL 02 04
Q.2(a) Q.2(b)	Describe the significance of root mean square roughness with suitable illustration. Explain waviness with a neat sketch.	[2] [3]	01 01	02 02
Q.3(a)	Illustrate the measurement techniques employed for the static coefficient of friction as	[2]	02	02
Q.3(b)	well as during continuous sliding. Formulate the relation for coefficient of friction given by Bowden and Tabor's simple adhesion theory stating its limitations.	[3]	02	03
Q.4(a)	Explain stick-slip phenomenon and the related observations associated with stick-slip condition.	[2]	02	02
Q.4(b)	Formulate the relation for coefficient of friction for ploughing by a hard conical asperity on a soft surface.	[3]	02	03
Q.5(a)	Outline the variables that relate to metallurgy and service that affects wear of a	[2]	03	03
Q.5(b)	component. Identify the different elementary and special forms of wear. Further, state how eventually wear mechanisms change from one form to the other or occur simultaneously along with some related applications.	[3]	03	01

:::::23/02/2023:::::M