BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B.TECH. SEMESTER: VI BRANCH: MECHANICAL SESSION: SP/2023

SUBJECT: ME365 DESIGN OF MECHANISMS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Explain any Whitworth quick return mechanism with neat diagram. [5] 1 2
Q.1(b) For the kinematic linkages shown in Figure, calculate the number of degrees of [5] 1 3
freedom.

- Q.2 Obtain a four bar mechanism graphically for two position motion generation such [10] 2 5 that two points A and B on the coupler link should move from position 1 given by A_1 =(2,6) and B_1 =(7,8) to position 2 given by A_2 =(6,6) and B_2 =(11,4). The coordinates are in cm. The length of input link should be 3 cm and output link should be 4 cm.
- Q.3(a) Derive Freudenstein's equation for three-point function generation [5] 3 3
- Q.3(b) For a dyad given by two vectors Z_1 and Z_2 shown in figure, find the vector Z_1 . [5] 3 4

Q.4 For the four-bar linkage in the figure shown, link2 has an angular velocity of 56 rad/s [10] 4 counterclockwise. The dimensions are $O_2A = 150$ mm, $O_4B = AB = 250$ mm, $O_2O_4 = 100$ mm, AC = 300 mm. Find the velocity of point C.

CO

BL

:::::27/04/2023:::::M