BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

	(MID SEMESTER EXAMINATION SP2023)				
CLASS: BRANCH	BTECH : MECHANICAL	SEMESTER : VI SESSION : SP2023			
TIME:	SUBJECT: ME353 COMPUTATIONAL FLUID DYNAMICS 02 Hours	FULL MARKS: 25			
2. Atten 3. The n	TIONS: uestion paper contains 5 questions each of 5 marks and total 25 marks. npt all questions. nissing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be supplied to the candi	dates			
Q.1(a)	What are the basic physical principles associated with fluid flow and heat train what are the associated equations commonly known as?	nsfer, and	[2]	CO 1	BL 1
Q.1(b)	what are the associated equations commonly known as? State and prove the physical significance of the divergence of velocity vector in a flow field.		[3]	1	2
Q.2(a)	Derive the continuity equation for fluid flow in the conservation form for an infinitesimally small control volume. Show the equivalence of the above equation to the conservation for a finite control volume.		[3]	1	3
Q.2(b)			[2]	1	3
Q.3(a)	Classify quasilinear Partial Differential Equations (PDEs) of 2 nd order, sta mathematical conditions for a simple linear 2-D equation of 2 nd order.	ting their	[2]	2	1
Q.3(b)	Giving simple examples of physical equations of heat transfer, fluid flow, etc, the different categories of PDEs mentioned above, and briefly state the characteristics associated with them.		[3]	2	2
0.4(2)	Prove the following relation for the first order derivative of a variable with	rospost to	[5]	2	4

Q.4(a) Prove the following relation for the first order derivative of a variable φ with respect to [5] 3 4 the x-dimension, where all the symbols carry usual meaning as discussed in the class. What is the order of accuracy?

$$\frac{\partial \phi}{\partial x} = \frac{1}{2h} \left[\frac{\overline{\delta_x} \phi}{1 + \frac{{\delta_x}^2}{6}} \right]$$

- Q.5(a) Define consistency of a numerical scheme. Show that central difference scheme applied [2] 3 2 to discretize the Laplace equation is consistent. What is the associated order of the truncation error?
- Q.5(b) What are the 4 types of iterative methods to solve any discretized algebraic equation over [3] 3 3 a space domain. Briefly discuss the application of Tri-Diagonal-Matrix Algorithm (TDMA), showing the sequential steps involved.

:::::22/02/2023:::::M