BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH		EMESTER : VI ESSION : SP/2023			
TIME:	SUBJECT: ME349 TURBOMACHINERY 3 Hours F	FULL MARKS: 50			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a) Q.1(b) Q.1(c)	What are the different components of energy transfer in turbomachines? What is the Eulers equation of turbomachines? A model of a centrifugal pump absorbs 5 kW at a speed of 1500 rpm, pumping a against a head of 6 m. The large prototype pump is required to pump water to a of 30 m. The scale ratio of diameter is 4. Assuming the same efficiency and similar find (a) the speed, (b) the power of prototype and (c) the ratio of discharge of prot and model.	water head rities,	[2] [2] [6]	CO 1 1 3	BL 2 1 3
Q.2(a) Q.2(b) Q.2(c)	What are the differences between impulse and reaction turbines? Define the degree of reaction and vane efficiency of the impulse turbine. Steam at 300 m/s is supplied to single stage impulse turbine through a nozzle nozzle angle is 25°, the mean diameter of the blade rotor is 100 cm and it has a of 2000 rpm. Find inlet and outlet blade angles if there is no axial thrust. If the velocity coefficient is 0.9 and steam flow rate is 10 kg/s find the power develope	. The speed blade	[3] [2] [5]	1 1 5	1 1 4
Q.3(a)	Explain the working principle of a centrifugal compressor with Enthalpy-Er	itropy	[3]	2	2
Q.3(b)	diagram. A single stage reciprocating air compressor takes in 8m ³ /min of air at 1 bar and and delivers it at 6 bar. The clearance is 5% of the stroke. The expansion compression are polytropic with the value of n=1.3. Calculate: (a) the temperatu delivered air; (b) volumetric efficiency (c) power required to drive the compresso	n and ure of	[3]	5	4
Q.3(b)	A centrifugal compressor runs at a speed of 15000 rpm and delivers 30 kg of a second. Exit radius is 0.35 m, relative velocity at exit is 100 m/s at an exit blade of 75°. Assume axial inlet and $T_{01} = 300$ K and $P_{01} = 1$ bar. Calculate (a) the torqu the power required to drive the compressor, (c) the ideal head developed, (d) the done.	ir per angle e, (b)	[4]	5	4
Q.4(a) Q.4(b)	Explain the working principle of an axial flow compressor with stage velocity trian An axial compressor stage has the following data. Stagnation temperature and pressure at entry are 20°C and 1 bar, and the degree of reaction is 50%. Flow coefficient: $\phi = 0.5$ Mean blade ring diameter: $d_m = 35$ cm Speed: $N = 18,000$ rpm Air angles at rotor and stator exit: $\alpha_1 = \beta_2 = 60^{\circ}$ Blade height at entry: $h = 5$ cm Work done factor: $\phi = 0.88$ Isentropic efficiency: $\eta = 0.85$ Mechanical efficiency: $\eta_m = 0.96$ Calculate (a) the air angles at the rotor and stator entry and (b) the mass flow ra air.		[5] [5]	1 5	2 4
Q.5(a) Q.5(b) Q.5(b)	Explain the fan laws for the same fan and fans of different sizes? Define some methods of reducing fan noise What are the losses in centrifugal fans?		[4] [3] [3]	2 1 1	2 1 1