BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BTECH SEMESTER: VI BRANCH: MECHANICAL SESSION: SP2023

SUBJECT: ME307 ROBOTICS ENGINEERING

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

- Q.1(a) A vector AP is rotated about \hat{Z}_A by an angle θ and is subsequently rotated about [2] 1 Evaluate \hat{X}_A by an angle ϕ . Evaluate the rotational matrix that accomplishes these rotations in the given order.
- - Q.2 {A} and {B} are frames differing only in orientation. {B} is attained as follows: [5] 1 Evaluate starting coinciding with {A}, {B} is rotated by θ radians about unit vector \widehat{K} , i.e., ${}^{A}_{B}R = {}^{A}_{B}R_{k}(\theta)$. Show that ${}^{A}_{B}R = e^{K\theta}$, where $K = \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix}.$
- Q.3(a) Write the name of the point where the tool frame should be affixed. [1] 1 Write Q.3(b) Show the attachment of the link frames and derive the DH-parameter of the [4] 1 Derive manipulator shown in Fig. Q.3(b).

Fig. Q.3(b)

- Q.4(a) Define repeatability and accuracy.
- Q.4(b) Derive inverse-kinematics solution for d_2 and d_3 shown in Fig. Q.4(b).

[3]

Fig. Q.4(b)

Q.5(a) For a manipulator derive Jacobian in force domain.

Derive [3] 2

Find

Q.5(b) The two-link manipulator (shown in Fig. Q.5(b)) is applying a force vector ${}^{3}F$ with its end-effector. Consider this force to be acting at the origin of {3}. Find the required joint torques as a function of configuration and of the applied force.

Fig. Q.5(b)

Hint:

$$R_K(\theta) = \begin{bmatrix} k_x k_x v\theta + c\theta & k_x k_y v\theta - k_z s\theta & k_x k_z v\theta + k_y s\theta \\ k_x k_y v\theta + k_z s\theta & k_y k_y v\theta + c\theta & k_y k_z v\theta - k_x s\theta \\ k_x k_z v\theta - k_y s\theta & k_y k_z v\theta + k_x s\theta & k_z k_z v\theta + c\theta \end{bmatrix}$$

:::::21/02/2023:::::M