BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSc I: MATHS & COMP.	SEMESTER : VIII SESSION : SP/2023			
TIME:	SUBJECT: MA413 STOCHASTIC PROCESS & SIMULATION 3 Hours	FULL MARKS: 50			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a)	Find the mean and variance of exponential distribution using the conce	ept of	[5]	CO 1	BL 1.10
Q.1(b)	probability generation function. Define Laplace transform for a random variable. Use it to find the mean and variance of Binomial distribution.			1	1.31
Q.2(a)	Define a stochastic process. Mention the different categories into which a stoc process can be classified with one example of each category.	hastic:	[5]	2	1.23
Q.2(b)	Let X_n , $n \ge 1$ be uncorrelated random variables with mean 0 and variance 1. Ve the process { X_n , $n \ge 1$ } is covariance stationary.	erify if	[5]	2	1.30
Q.3(a)	Define a random walk and show that the position X_n of a particle after n step random walk between two absorbing barriers constitutes a Markov chain.	os in a	[5]	3	1.20
Q.3(b)	What do you mean by order of a Markov chain? How is this order determined?		[5]	3	1.12
Q.4(a) Q.4(b)	Describe a Poisson Process explaining its postulates clearly. Suppose that customers arrive at a service counter in accordance with a P Process with mean rate of 2 per minute. Then in an interval of 3 minutes, what probability that (i) exactly 4 customers will arrive? (ii) less than 4 customer arrive? (iii) more than 4 customers will arrive?	is the	[5] [5]	4 4	1.23 1.25
Q.5(a)	Write an algorithm to simulate a random variable X whose distribution is given by $x:$ 0 1 2 3 4	below:	[5]	5	1.25
Q.5(b)	P(X=x): 3/19 6/19 4/19 5/19 1/19 Given a uniform variate u=0.4125, use it to simulate a Poisson variate with mea	an 2.	[5]	5	1.32

:::::26/04/2023:::::E