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   CO BL 
Q.1(a) Define a basis for a topology. Give an example. [5] CO1 1.10 
Q.1(b) Prove that every finite point sent in a Hausdroff space is closed. [5] CO1 1.11 
     
     
Q.2(a) Let X be a metric space with metric d. Define RXXd  by the equation 

)}.,(,1{min),( yxdyxd  Then prove that d is a metric that induces the same 
topology a d. 

[5] CO2 1.12 
1.21 

Q.2(b) Let YXf : . If the function f is continuous, then prove that every convergent 

sequence xxn   in X the sequence ).()( xfxf n   

[5] CO3 1.12 
1.21 
1.24 

     
     
Q.3 Let X be a topological space. Let one-point set in X be closed. The prove that X is 

regular if and only if given a point x of X and a neighbourhood U of X, there is a 

neighbourhood V of X such that .UV   

[10] CO3 1.21 
1.31 

     
     
Q.4 Let Y be a subspace of X. Then prove that Y is compact if and only if every covering 

of Y by sets open in X contains a finite subcollection covering Y. 
[10] CO4 1.25 

1.31 
     
     
Q.5 Prove that a metric space (X,d) is compact  if  and only if it is complete and totally 

bounded 
[10] CO5 1.24 

1.32 
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