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Q.1(a) Show that the function  y(x) = xe-  is a solution of the integral equation:  

𝑦(𝑥) = (𝑥 − 1)𝑒 + 4 𝑒 ( ) 𝑦(𝑡)𝑑𝑡 

 

[5]  1  1 

Q.1(b) Convert the following IVP into the corresponding integral equation:             
𝑦 (𝑥) − 𝑠𝑖𝑛𝑥 𝑦 (𝑥) + 𝑒 𝑦(𝑥) = 𝑥,   
subject to the conditions:   𝑦′(0) = −1, 𝑦(0) = 1 
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Q.2(a) If exists, find the Eigen values and Eigen functions of the following homogeneous 

Fredholm integral equations with degenerate kernels: 

𝑦(𝑥) = λ (2𝑥𝑡 − 4𝑥 )𝑦(𝑡)𝑑𝑡 
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Q.2(b) Prove that the following non-homogeneous Fredholm Integral equation:  

𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝑠𝑖𝑛(𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡   

has infinitely many solutions when 𝑓(𝑥) = 1.  
Hence determine all such solutions. 
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Q.3(a) Solve the following Fredholm integral equations with the help of resolvent kernels  

y(x) = x + ∫ y(t)dt
/
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Q.3(b) Solve the following Voltera integral equations by the method of Successive 

approximation: 𝑦(𝑥) = 𝑥3 −   ∫ 3  𝑦(𝑡) 𝑑𝑡  
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Q.4(a) Prove that the eigenfunctions of a symmetric kernel, corresponding to different 
eigenvalues are orthogonal. 
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Q.4(b) Using Hilbert-Schmidt's theorem solve the following symmetric integral equation 
of  second kind: 

𝑦(𝑥) = (𝑥 + 1) + λ ∫ {𝑥𝑡 + 𝑥 𝑡 }𝑦(𝑡)𝑑𝑡  

[5] 4 3 

Q.5(a) Define Adjoint and Self-adjoint equation of 2nd order homogeneous linear 
differential equation. 
Transform the following differential equations into an equivalent self-adjoint 
equations: 𝑦 − (tan 𝑥)𝑦 + 𝑦 = 0 
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Q.5(b) Construct the Green's function of the following boundary value problem: 
𝑦 (𝑥) + μ 𝑦(𝑥) = 0,     𝑦(0) = 0,    𝑦(1) = 0, 

[5] 5 3 
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