BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)				
CLASS: BRANCI		SEMESTER : IV SESSION : SP/2023			
TIME:	SUBJECT: MA209 INTEGRAL EQUATIONS AND GREEN'S FUNCTION		MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a)	Show that the function $y(x) = xe^{-x}$ is a solution of the integral equation: $y(x) = (x - 1)e^{-x} + 4 \int_0^\infty e^{-(x+t)} y(t) dt$	[5]	CO 1	BL 1	
Q.1(b)	Convert the following IVP into the corresponding integral equation: $y''(x) - sinx \ y'(x) + e^x y(x) = x$, subject to the conditions: $y'(0) = -1$, $y(0) = 1$	[5]	1	3	
Q.2(a)	If exists, find the Eigen values and Eigen functions of the following homogeneous Fredholm integral equations with degenerate kernels: $y(x) = \lambda \int_0^1 (2xt - 4x^2)y(t)dt$	[5]	2	1	
Q.2(b)	Prove that the following non-homogeneous Fredholm Integral equation: $y(x) = f(x) + \frac{1}{\pi} \int_0^{2\pi} sin(x+t)y(t)dt$ has infinitely many solutions when $f(x) = 1$. Hence determine all such solutions.	[5]	2	2	
Q.3(a)	Solve the following Fredholm integral equations with the help of resolvent kern $y(x)=x+\int_0^{1/2}y(t)dt$	els [5]	3	3	
Q.3(b)	Solve the following Voltera integral equations by the method of Success approximation: $y(x) = x3^x - \int_0^x 3^{x-t} y(t) dt$	ve [5]	3	3	
Q.4(a)	Prove that the eigenfunctions of a symmetric kernel, corresponding to differe eigenvalues are orthogonal.	ent [5]	4	2	
Q.4(b)	Using Hilbert-Schmidt's theorem solve the following symmetric integral equation of second kind:	[5]	4	3	
Q.5(a)	$y(x) = (x + 1)^2 + \lambda \int_{-1}^{1} \{xt + x^2t^2\}y(t)dt$ Define Adjoint and Self-adjoint equation of 2nd order homogeneous line differential equation. Transform the following differential equations into an equivalent self-adjoint equations: $y'' - (\tan x)y' + y = 0$	ear [5]	5	3	
Q.5(b)	Construct the Green's function of the following boundary value problem: $y''(x) + \mu^2 y(x) = 0$, $y(0) = 0$, $y(1) = 0$,	[5]	5	3	

:::::28/04/2023 M:::::