BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: IMSc **SEMESTER: IV BRANCH:** PHYSICS & CHEMISTRY SESSION: SP2023 SUBJECT: MA207R1 MATHEMATICS - IV TIME: 02 Hours FULL MARKS: 25 **INSTRUCTIONS:** 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates _____ CO BL Q.1(a) Check whether the functions $f(x) = x^2$ and $g(x) = x^2 \log_e x$ are linearly independent 2 [2] 1 or not for x > 0. Support your answer with proper reasoning. Q.1(b) Construct the general solution of the following differential equation: [3] 1 3 $(D^2 - 4D + 3)v = e^{3x}$ where $D \equiv \frac{d}{dx}$. Q.2(a) Using proper substitution, transform the following Cauchy - Euler differential equation: [2] 1 2 $x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 3y = 0,$ x > 0into the form $\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = 0$ with *t* as the independent variable, where *p* and q are constants. Determine the values of p and q. Develop the general solution of the following differential equation with the use of [3] 3 Q.2(b) 1 method of variation of parameters : $y'' - 6y' + 9y = \frac{e^{3x}}{r^2}$ Q.3(a) Identify and classify the singular point(s) of the following differential equation on the [2] 2 1 x - axis: $(x-1)v'' + x^2v' + v = 0$ Q.3(b) For the differential equation: [3] 2 3 $\frac{d^2y}{dr^2} + x\frac{dy}{dr} + y = 0$ Determine its general solution $y = \sum_{n=0}^{\infty} a_n x^n$ in the form $y = a_0 y_1(x) + a_1 y_1(x)$, where $y_1(x)$ and $y_2(x)$ are power series, a_0 and a_1 are arbitrary constants.

Q.4(a) For the Legendre polynomial $P_n(x)$ of order n, prove that: i. $P_n(1) = 1$ ii. $P'_{n}(1) = \frac{n(n+1)}{2}$ where $P'_{n}(x) = \frac{d}{dx} \{P_{n}(x)\}$

ΡΤΟ

2

[2]

2

Q.4(b) Define the expression of $J_n(x)$ in terms of gamma function. Hence, derive [3] 2 3

$$\frac{d}{dx}\left\{x^{n}J_{n}(x)\right\} = x^{n}J_{n-1}(x)$$

where $J_n(x)$ denotes Bessel's function of first kind of order n.

- Q.5(a) State the definition to find the Laplace transform of any function f(t) for all $t \ge 0$. [2] 3 2 Hence, apply it to compute the Laplace transform of $f(t) = e^{2t}$.
- Q.5(b) Using properties, determine the Laplace transform of the function $F(t) = (1 + te^{-t})^2$. [3] 3 3

:::::23/02/2023:::::M