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Q.1(a) Check whether the functions 

2)( xxf  and xxxg elog)( 2  are linearly independent 

or not for .0x  Support your answer with proper reasoning. 
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Q.1(b) Construct the general solution of the following differential equation: 

                                       
xeyDD 32 )34(   

where .
dx

d
D   

[3] 1 3 

     
Q.2(a) Using proper substitution, transform the following Cauchy - Euler differential equation: 
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 with t as the independent variable, where p  and 

qare constants. Determine the values of p  and .q  
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Q.2(b) Develop the general solution of the following differential equation with the use of 
method of variation of parameters : 
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Q.3(a) Identify and classify the singular point(s) of the following differential equation on the 

x axis: 
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Q.3(b) For the differential equation: 
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Determine its general solution n
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in the form ),()( 1110 xyaxyay   where 

)(1 xy and )(2 xy are power series, 0a and 1a are arbitrary constants. 
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Q.4(a) For the Legendre polynomial )(xPn of order ,n prove that:  
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Q.4(b) Define the expression of )(xJ n in terms of gamma function. Hence, derive 
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where )(xJ n denotes Bessel’s function of first kind of order .n  

[3] 2 3 

     
Q.5(a) State the definition to find the Laplace transform of any function )(tf  for all .0t  

Hence, apply it to compute the Laplace transform of .)( 2tetf   
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Q.5(b) Using properties, determine the Laplace transform of the function .)1()( 2ttetF   [3] 3 3 
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