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Q.1(a) Compute the general solution of the following differential equation using operator 

method: 
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Q.1(b) Applying method of variation of parameters, solve the differential equation: 
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Q.2(a) Identify whether 0x is an ordinary or a singular point of the differential 

equation:  
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Also, construct the series solution of the above differential equation about .0x  
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Q.2(b) Prove the following: 
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n   when n is any positive integer 

where )(xPn  denotes Legendre polynomial of order n and )(xJ n denotes 

Bessel’s function of first kind of order .n  

[5]  2 2 

     
Q.3(a) Develop the Laplace transforms of the following functions: 

i. )4sin34(cos)( 3 ttetf t    

ii. tettg 53)(   
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Q.3(b) Obtain the Fourier series of the function ,)( 2xxf  .  x  Hence, show 

that: 
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Q.4(a) A function yixxyzf 22)(  is given. Determine the points where 

i. )(zf is continuous in the complex plane. 

ii. Cauchy-Riemann equations get satisfied for the function ).(zf  

iii. derivative )(zf  exists 

iv. )(zf is analytic 
Support your answers with proper reasoning.  
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Q.4(b) State Cauchy's Integral Formula. Hence, using it, compute the value of the integral:  
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 around the circle .2: zC      

     
 
 

Q.5(a) 
Construct the Laurent series expansions of the function 
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zz
zf that is 

valid in a  

i. deleted neighbourhood of 0z   

ii. deleted neighbourhood of 1z   

State the domains throughout which obtained series expansions are valid. 
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Q.5(b) Identify the poles (with their orders) of the function .
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obtain the residues at all the identified poles.  
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