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   CO BL 
Q.1(a) Define ‘basis’ for a vector space? Explain if the the set {(2, −4,1), (0,3, −1), (6,0, −1)} 

a basis for ℝ . 

[5] 1 1+2   

Q.1(b)  Compute bases for  and 
 What are the 

dimensions of and ? 

[5] 1       3               

     
Q.2(a) Let 𝑉 and 𝑊 be finite dimensional vector spaces of equal dimensions defined over the 

same field ℱ. Explain if it is possible to have a linear operator 𝑇: 𝑉 ⟶ 𝑊 which is 
one-to-one but not onto and vice-versa 

[5] 1     2 

Q.2(b) Let 𝛽 be the standard ordered basis for ℝ  and 𝑇: ℝ ⟶ ℝ  defined by 
𝑇(𝑎 , 𝑎 , 𝑎 ) = (2𝑎 + 𝑎 , −𝑎 +  4𝑎 + 5𝑎 , 𝑎 + 𝑎 ). Find matrix representation 
of 𝑇 w.r.t.  𝛽. 

[5] 2               2        

     
Q.3(a) For the following matrix 𝐴𝜖𝑀 × (ℝ), compute eigen values and corresponding eigen 

vectors of 𝐴 where A = 
0 0 1
1 0 −1
0 1 1

  

[5] 2       3       

Q.3(b) Let 𝑉 = 𝜌 (ℝ)  and 𝑇  be defined by 𝑇(𝑎𝑥 + 𝑏𝑥 + 𝑐) = 𝑐𝑥 + 𝑏𝑥 + 𝑎. Test 𝑇  for 
diagonalizability and if diagonalizable find a basis 𝛽 for 𝑉 such that [𝑇]  is a diagonal 
matrix. 

[5] 2            4         

     
Q.4(a) In 𝐶[0,1], for 𝑓, 𝑔𝜖𝐶[0,1], define 

⋖ 𝑓, 𝑔 ⋗= ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡.  For 𝑓(𝑡) = 𝑡  and 𝑔(𝑡) = 𝑒 ,  compute ∥ 𝑓 ∥, ∥ 𝑔 ∥  and ∥

𝑓 + 𝑔 ∥. 

[5] 1        3 

Q.4(b) Let 𝑇 be the linear operator on 𝜌 (ℝ)  defined by 𝑇 𝑔(𝑥) = −𝑔(𝑥) −

𝑔 (𝑥).  Compute a Jordan canonical form of 𝑇 

[5] 3     3 

     
Q.5(a) Apply the Gram-Schmidt process to the given subset 𝑆 of the inner product space 𝑉 to 

obtain an orthogonal basis for 𝑆𝑝𝑎𝑛 𝑆 . 𝑉 = 𝜌 (ℝ) with the inner product- 

⋖ 𝑓, 𝑔 ⋗= ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑥, 𝑆 = {1, 𝑥, 𝑥 , 𝑥 }. 

[5] 1  3 

Q.5(b) Let 𝑉 = 𝜌 (ℝ) with the inner product ⋖ 𝑓, 𝑔 ⋗= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 , ∀𝑓, 𝑔𝜖𝑉.  Find 

the orthogonal projection of 𝑓(𝑥) = 𝑥  on 𝜌 (ℝ). 

[5] 1 3 

     
 

::::::27/04/2023::::::M 
  


