CLASS: BRANCI		BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)	SEMESTER : SESSION : SF		3
TIME:	02 Hour	SUBJECT: MA205 DISCRETE MATHEMATICS	: MA205 DISCRETE MATHEMATICS FULL MARKS: 25		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
Q.1(a) Q.1(b)	Define well orde Show that $\forall x (P($	ring Principle. (x) $\land Q(x)$ and $\forall x P(x) \land \forall Q(x)$ are logically equivalent.	[2] [3]		BL 1 3
Q.2(a) Q.2(b)		is prove that $(\sim (p \land \sim q) \land (\sim q \lor r) \land (\sim r)) \rightarrow \sim p$. e of Mathematical Induction to verify that for any positive intege e by n.	[2] r n, [3]		2 4
Q.3(a)		ing function for the given recurrence relation $a_r - 8a_{r-1}$ the initial condition $a_0 = 0$ and $a_1 = 3$.	+ [2]	2	3
Q.3(b)		ence relation $a_r - 2a_{r-1} - 15a_{r-2} = r^2$.	[3]	2	3
Q.4(a) Q.4(b)	Find the generat	ting function for the sequence 0^2 , 1^2 , 2^2 , 3^2 , 4^2 , 5^2 ting function for the given recurrence relation $a_r = -2a_r$ the initial condition $a_0 = 2$ and $a_1 = 3$.	[2] -2 + [3]		1 3
Q.5(a) Q.5(b)	Using Warshall's	ace relation with example. algorithm compute transitive closure of the relation $R =$ (2,2) (3,4)(4,4)} defined over non empty set $A = \{1,2,3,4\}$.	[2] [3]		1 4

:::::24/02/2023:::::M