BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP2023)

CLASS: BTECH SEMESTER EXAMINATION SP2023)					
BRANCH: ECE, EEE, CSE, IT SESSIO		SESSION:	N: SP/2023		
SUBJECT: MA203 NUMERICAL METHODS TIME: 03 Hours FULL MA			RKS: 50		
INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates.					
Q.1(a)	Find the negative root of $x^3 - 4x + 9 = 0$ lying betwee Bisection Method. Perform five iterations only correct places.	-	[5]	CO 1	BL 2
Q.1(b)				1	3
Q.2(a)	Solve the following system of equations using Gauss-Elimination method. $5x - 2y + 3z = 18$, x + 7y - 3z = -22, $2x - y + 6z = 22$			2	2
Q.2(b)				2	3
Q.3(a)	Find the value of y at $x = 6$ from the following data. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[5]	3	2
Q.3(b)				3	3
	x01234 $f(x)$ 11154085				
Q.4(a)	On dividing the interval into 10 equal parts and applyin rule, find the value of the integral $\int_0^5 \frac{dx}{4x+5}$ correct to		[5]	4	3
Q.4(b)	Evaluate $\int_{1.0}^{1.3} \sqrt{x} dx$ taking $h = 0.05$ by Trapezoidal ru	le.	[5]	4	2
Q.5(a)	Consider the initial value problem (IVP) $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0)$		[5]	5	2

decimal places. Q.5(b) Consider the initial value problem (IVP) $\frac{dy}{dx} = x + y, y(0) = 1$. Taking step [5] 5 3 size h = 0.1, find the value of y(0.2) using Runge-Kutta fourth order method correct to 4 decimal place

size h = 0.02, find the value of y(0.1) using Euler's method correct to 4

:::::24/04/2023 M:::::