BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

			SEMESTER: IV SESSION: SP/2023		
SUBJECT: MA203 NUMERICAL METHODS		FULL MARKS: 25			
The c Atten The r	CTIONS: question paper contains 5 questions each of 5 marks and total 25 marks. npt all questions. nissing data, if any, may be assumed suitably. rs/Data handbook/Graph paper etc., if applicable, will be supplied to the candidat	es.			
).1(a)	How many number of significant digits in the following (i) 0.0459 (ii) 4.590 (iii) 1.079×10^3 (iv) 1.0790×10^3	[2]	CO 1	1	
<u>)</u> .1(b)	The derivative of a function $f(x)$ at a particular value of x can be approximate calculated by $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ of $f'(2)$ For $f(x) = 7e^{0.5x}$ and $h = 0.3$, find (a) the approximate value of $f'(2)$, (the true value of $f'(2)$, (c) the true error for part (a).		1		
).2(a)	One root of the equation lies in the interval (3,4). Find the least number of iteratio needed for the bisection method so that $ error \le 10^{-3}$	ns [2]	1		
).2(b)	Solve the following $xe^x = \cos x$ using Regula-false method correct to two decimplaces.	al [3]	1		
<u>)</u> .3(a)	Find the LU decomposition of the matrix $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$	[2]	2		
<u>)</u> .3(b)	Find the solution using Gaussian elimination with partial pivoting using five significal digits with chopping in your calculations $20x_1 + 15x_2 + 10x_3 = 45$ $-3x_1 - 2.249x_2 + 7x_3 = 1.751$ $5x_1 + x_2 + 3x_3 = 9$	nt [3]	2		
Q.4	Find the solution to the following system of equations using the Gauss-Seidel method $12x_1 + 3x_2 - 5x_3 = 1$ $x_1 + 5x_2 + 3x_3 = 28$ $3x_1 + 7x_2 + 13x_3 = 76$ Use $(x_1, x_2, x_3) = (1,0,1)$ as the initial guess and conduct five iterations.	d. [5]	2		
Q.5	Find a cubic polynomial using Lagrange's formula for the data: x: -2 -1 1 3 f(x): -1 3 -1 19	[5]	3		

:::::20/02/2023:::::M