BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(MID SEMESTER EXAMINATION SP2023) CLASS: **IMSc** SEMESTER: II **BRANCH: MATHEMATICS AND COMPUTING** SESSION: SP/2023 **SUBJECT: MA110 COMPLEX ANALYSIS** TIME: **FULL MARKS: 25** 02 Hours **INSTRUCTIONS:** 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates ______ CO BL Find if $f(z) = |z|^2$ is analytic at z = 0? [2] 1 Explain whether it is possible to have a nonconstant analytic function f whose Ref is Q.1(b) [3] 2 2 Q.2(a) Show that $u = x^3 - 3xy^2$ is harmonic in \mathbb{R}^2 . 3 3 [2] Q.2(b) Construct harmonic conjugate of u in \mathbb{R}^{2} . [3] 3 Q.3(a) 3 [2] 3 Calculate $\int_{|z-1|=1} x \, dz$. 2 2 Q.3(b) Explain if it is possible to have an analytic function f analytic on the closed disk [3] $|z+1| \le 5, f''(-1) = i \text{ and } \max_{|z+1| \le 5} |f(z)| = 5.$ Calculate $\int_{\mathcal{C}} \frac{zdz}{(9-z^2)(z+i)}$, where $i^2=-1$ and \mathcal{C} is the circle |z|=2 described in [2] 3 3 the positive sense. Q.4(b) Calculate the integral $\int_{|z|=1}^{\infty} \frac{e^z}{z^3} dz$. [3] 3 3 If the series $\sum_{n=0}^{\infty} a_n z^n$ converges at $z=z_1$ then show that $\sum_{n=0}^{\infty} |a_n z^n|$ converges 2 1

for all $|z| < |z_1|$.

2 2,3 Compute the radius of convergence of the power series $\sum_{n=0}^{\infty} z^n$ and interpret the result.

:::::29/05/2023:::::M