BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

		MESTER: II SSION: SP 2	FER: 11 N: SP 2023		
SUBJECT: MA108R1 MATHEMATICS III TIME: 02 Hours FULL MARKS: 25 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates					
	Determine whether the sequence $\{a_n = 4 + (3/4)^n\}$ is monotonic, bounded and convergent. Test the behaviour of the infinite series: $\sum_{n=1}^{\infty} ((n^3 + 1)^{1/3} - n)$	[2]		BL 2 2	
Q.2(a)	Apply integral test to test the convergence of the series $\sum_{n=2}^{\infty} \left[\frac{1}{n^2} sin\left(\frac{\pi}{n}\right)\right]$	[2]		2	
Q.2(b)	Discuss the convergence of the series $1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots, x > 0.$	[3]	2	2	
Q.3(a) Q.3(b)	Is it possible to find two 2x2 matrices A and B such that $AB - BA = I_2$? Justify. Determine the values of b for which the rank of the matrix $\begin{pmatrix} b & 1 \\ 3 & b - 2 \\ 3(1+b) & 0 & 1 \end{pmatrix}$ is 2?	$ \begin{bmatrix} 0 \\ 1 \\ + b \end{bmatrix} $ [3]	2 2	2 3	
Q.4(a)	Apply Cayley-Hamilton theorem to find the inverse of the matrix $\begin{pmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{pmatrix}$	[3]	2	2	
Q.4(b)	Check the diagonalizability of the matrix $\begin{pmatrix} 2 & 0 & -3 \\ 1 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$.	[2]	2	3	
Q.5(a)	Evaluate whether following limit exists or not. $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$.	[2]	3	1	
Q.5(b)	Suppose for a two-variable function $f(x, y)$ both the partial derivatives $\frac{\partial f}{\partial x}$ and exist. Is the function always continuous? Explain with an example.	$\frac{\partial f}{\partial y}$ [3]	3	2	

:::::29/05/2023:::::