BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)				
CLASS: BRANCH	IMSC I: Mathematics		SEMESTER : II SESSION : SP/2023	
TIME:	SUBJECT: MA106 ORDINARY DIFFERENTIAL EQUATIONS 3 Hours	FULL M	ARKS:	50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Determine if the given equation is exact and hence solve: $(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0.$	[5]	CO CO2	BL BT4
Q.1(b)	Find the orthogonal trajectories of the family of curves $y^2 = cx$.	[5]	C01	BT1
Q.2(a)	Solve the Cauchy-Euler equation $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = 42/x^4.$	[5]	CO1	BT3
Q.2(b)	Find the general solution of the non-homogeneous linear differential equation by $\frac{d^2 y}{d^2 y}$	[5]	C01	BT1
Q.3(a)	the method of variation of parameters $\frac{d^2y}{dx^2} + y = 3x + 5 \tan x$. Solve the simultaneous differential equation $\frac{dx}{dt} = 3x + 4y; \frac{dy}{dt} = 2x + y$.	[5]	C01	BT3
Q.3(b)	Find the solution of the total differential equation	[5]	C01	BT1
	zydx + xzdy + xydz = 0 by first verifying the condition of integrability.			
Q.4	Find a Frobenius series solution of Bessel's equation of order zero $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + x^2y = 0.$	[10]	C01	BT1
Q.5(a)	Determine if the function $f(x, y) = y^{3/4}$ satisfies the Lipschitz condition on the	[5]	CO2	BT4
Q.5(b)	rectangle $ x \le 2$, $ y \le 3$. If yes, then find the Lipschitz constant. Find the eigen values and eigen functions of the Sturm-Liouville problem $\frac{d^2y}{dx^2} + \lambda y = 0$, $(y(0) = 0, y(L) = 0)$, where $L > 0$.		C01	BT1

:::::18/07/2023:::::