BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BTECH ALL		SEMESTER : VI SESSION : SP/202
TIME:	3 Hours	SUBJECT: IT340 MACHINE LEARNING	FULL MARKS: 50
INSTRUCT 1. The que 2. Attemp 3. The mis 4. Before 5. Tables/	IONS: estion paper cor t all questions. ssing data, if any attempting the Data hand book	ntains 5 questions each of 10 marks and total 50 marks y, may be assumed suitably. question paper, be sure that you have got the correct /Graph paper etc. to be supplied to the candidates in t	s. question paper. the examination hall.

Q.1(a) Illustrate the machine learning process with the help of diagram.

Q.1(b) The height of boys and girls are given in Table 1. Table1. Sample data

TableT. Sample data					
Height	of	65	70	75	78
Boys(X _i)					
Height	of	63	67	70	73
Girls(y _i)					

Fit a suitable line of best fit for the above data. Also find the coefficient and slope of the line.

- Q.2(a) Illustrate the algorithm for logistic regression with example.
- Assess a student's performance during of study and predict whether a student will Q.2(b) get a job offer or not in his final year of the course. The training dataset T is given in Table 2. Apply ID3 decision tree and do the computation for one iteration and draw the decision tree after one iteration.

Table 2: Dataset T					
S.No	CGPA	Instructiveness	Practical	Communication	Job
			Knowledge	skills	Offer
1	≥9	Yes	Very good	Good	Yes
2	≥8	No	Good	Moderate	Yes
3	≥9	No	Average	Poor	No
4	<8	No	Average	Good	No
5	≥8	Yes	Good	Moderate	Yes
6	≥9	Yes	Good	Moderate	Yes
7	<8	Yes	Good	Poor	No
8	≥9	No	Very good	Good	Yes
9	≥8	Yes	Good	Good	Yes
10	≥8	Yes	Average	Good	yes

- Q.3(a) Illustrate the working of Recurrent neural network. Also state the difference [5] CO4 K3 between neural network and Recurrent Neural network.
- Q.3(b) The MLP consists of an input layer, hidden layer and an Output layer. The input [5] CO5 layer has 4 neurons, the hidden layer has 2 neurons and the output has a single neuron. Train the MLP by updating the weights and biases in the network upto one iteration.

The supporting data is given below.

X1	X2	X3	X4	O _{desired}
1	1	0	1	1

x1=1, x2=1, x3=0, x4=1, w15=0.3, w16=0.1, w25= -0.2, w26=0.4, w35=0.2, w36= -0.3, w45=0.1, w46=0.4, w57= -0.3, w67= 0.2, Θ 5=0.2, Θ 6=0.1, Θ 7= -0.3.

CO1 K1

CO3 K2

K3 [5] CO1 [5] K2 CO3

K2

со BL

[5]

[5]

23

- Q.4(a) Describe the EM algorithm for clustering.
- Q.4(b) Describe the single linkage steps for clustering. Consider the array of points as [5] CO2 shown in Table 3. K2 Table 3. dataset

Object	X	Y		
0	1	4		
1	2	8		
2	5	10		
3	12	18		
4	14	28		

Apply single linkage clustering and draw the dendrogram.

- Q.5(a) Illustrate the concept and ensemble methods present the algorithm with the help [5] CO3K3 5 of diagram
- Q.5(b) State the difference between bagging and boosting. Illustrate the bagging [5] CO5K1 5 algorithm.

:::::01/05/2023 M:::::

CO3 [5] 4 K3

4