BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLA BRA	ASS: ANCH:	IMSc FOOD TECHNOLOGY			SEMESTER : VI SESSION : SP2023		
TIME:		02 Hours	SUBJECT: FT309 MASS TRANSFER IN FOOD PROCESSING 2 Hours		FULL MARKS: 25		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 							
Q1	From t equation	the first princip on to determine	ble derive on equation to determine the molar flux. Apply this molar flux for steady diffusion A through non diffusing B.	[5]	CO-1	L2	
Q2	Methar pressu pressu the val equime	ne diffuses at ste re of methane is re is 101.32 kPa ue of diffusivity olal counter-diff	eady state through a tube containing helium. At point 1, the partial s P_{A1} = 55 kPa and at point 2, 0.03 m apart P_{A2} = 15 kPa. The total and the temperature is 298 K. At this pressure and temperature, v is 6.75 x 10 ⁻⁵ m ² /sec. Calculate the flux of CH ₄ at steady state for fusion.	[5]	CO-1	L2	
Q3	A sphe air at 3 be assu naphth naphth	re of naphthaler 318K and 1.0132 umed to be at 3 balene in air at balene from the	ne having a radius of 2.0 mm is suspended in a large volume of still $5X10^5$ Pa (1 atm). The surface temperature of the naphthalene can 18K and its vapor pressure at 318K is 0.555 mm of Hg. The D _{AB} of 1318K is 6.92X10 ⁻⁶ m ² /s. Calculate the rate of evaporation of surface.	[5]	CO-1	L2	
Q4	Discuss the pro	s application of ocesses.	azeotropic and extractive distillation. Give Flow sheet to explain	[5]	CO-2	L1	
Q5	Soyabe 18.6% separa 11% me	ean seed are ex oil, 69.0% solid ted from the he pisture. Find the	tracted with hexane in batch Extracter. The flaked seed contain and 12.4 % moisture. At the end of the process, cake of milk is exane oil mixture. The cake analysis yield 0.8% oil, 87.7% solid and e % recovery of oil. All % are by wt only.	[5]	CO-3	L2	

:::::20/02/2023:::::M