BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSc./MSc. : PHYSICS	SEMESTER: VIII/II SESSION: SP/2023		
TIME:	SUBJECT: EE601 PROCESS, MEASUREMENT AND CONTROL 3 Hours	FULL	MARK	S: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Derive the expression of the time-response of a second-order process subjected to a	[4]	CO CO1	BL BL4
Q.1(b)	The step response of a second-order process exhibits a peak overshoot of 40% and a settling time of 4s, for 3% tolerance band. Determine the location of the poles in the s-plane and estimate the peak time of the process response.	[6]	CO1	BL3
Q.2(a)	Summarize the importance of performance indices in the tuning of PID controller. List the different performance indices and write their expression.	[5]	CO2	BL2
Q.2(b)	Explain the significance of quarter amplitude damping (QAD). Explain any one method of the Ziegler-Nichols tuning method.	[5]	CO2	BL1
Q.3(a)	Discuss the concept of stability with suitable examples. Compare the concepts of absolute and relative stability	[4]	CO3	BL2
Q.3(b)	Apply Routh-Hurwitz criteria to test the stability of the following polynomials. Also, find how many roots of each of the below-mentioned polynomials are on the right half of the s-plane. 1) $p(s)=s^5+2s^4+3s^3+6s^2+5s+3$ 2) $p(s)=3s^5+5s^4+6s^3+3s^2+2s+1$	[6]	CO3	BL3
Q.4(a) Q.4(b)	Describe cascade control, ratio control and selective control. Explain Smith Predictor.	[5] [5]	CO4 CO4	BL1 BL1
Q.5(a)	Develop the state-space model for the multivariable system shown below, where k_1 , k_2 are the spring constants of the springs, C_1 , C_2 are the damping coefficients of the dampers, x_1 , x_2 are the positions of the bodies, m_1 , m_2 are the masses and F is the applied force. Assume that both x_1 and x_2 are the outputs of the system and F is the input to the system.	[7]	CO5	BL6

Q.5(b) Describe Relative Gain Array (RGA).

:::::24/04/2023:::::E