BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH		SEMESTER : II SESSION : SP/2023		
TIME:	SUBJECT: EE561 EMBEDDED CONTROL OF SWITCHING POWER CONVERTER 3 Hours FULI	RTER FULL MARKS: 50		
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Q.1(b)	Differentiate between linear power supply and switched mode power supply. List two application of SMPS in renewable energy harnessing.	[5] [5]	CO 1 1	BL 1 1
Q.2(a)	Explain the method for determination of Proportional-Integral (PI) controller gain i case of Boost converter using an appropriate flow chart.	n [5]	2	2
Q.2(b)	Relate small signal change in output voltage (\hat{V}_C) and small signal change in the inpuduty cycle (\hat{d}) in case of Boost Converter by obtaining a transfer function.	ıt [5]	2	2
Q.3(a)	Analyze the impact of the integral windup error on the time domain dynamics of th DC-DC converter.	e [5]	3	3
Q.3(b)	Analyze the effect of sub-harmonic oscillations on the stability of Digital-PWM DC-DC converter with the help of voltage and current waveform.	rs [5]	3	3
Q.4(a) Q.4(b)	Develop a small signal model of the buck converter. Compute full state feedback controller gain of following small signal model of buc converter. $\begin{bmatrix} \hat{e}_1 \\ \hat{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} \hat{e}_1 \\ \hat{e}_2 \end{bmatrix} + \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \hat{V}_{DC} \\ \hat{d} \end{bmatrix}$	[5] k [5]	4 4	4 4
	Where, \hat{e}_1 = small signal error between the desired inductor current and actual inductor current \hat{e}_2 = small signal error between the desired capacitor voltage and actual capacitor voltage. \hat{V}_{DC} = small signal change in input DC voltage \hat{d} = small signal change in duty cycle			
Q.5(a) Q.5(b)	Code an ATMEGA2560 microcontroller in order to capture analog voltage signal usin ADC registers. Design an embedded system block diagram for closed-loop voltage control of DC-D Buck converter		5 5	5,6 5,6

:::::25/04/2023:::::E