BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH	B.Tech : EEE	SEMESTER : VI SESSION : SP/2023			
TIME:	SUBJECT: EE365 INTODUCTION TO SUSTAINABLE ENERGY 02 Hours	FULL MARKS: 25			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
Q.1(a)	Explain why there a need to harness non-conventional sources of energy? Give two	o main	[2]	CO CO1	BL BL2
Q.1(b)	Teasons. Discuss about the status of conventional and non-conventional energy sources and what are their future prospect?	in India,	[3]	CO1	BL2
Q.2(a) Q.2(b)	Describe with proper justification the equivalent circuit of a practical solar PN Demonstrate the effect of temperature with proper derivation on the characteristics such as short circuit current, open circuit voltage and peak pow	′cell. PV cell wer.	[2] [3]	CO2 CO2	BL2 BL3
Q.3	A pn junction solar module consisting of 2*10 identical pieces polycrystalline s in series (156 mm * 156 mm), illuminated uniformly with 1000 W/m ² temperature of 25 ^o C gives the current of 0.85 A/cell and 0.55 V/cell at power point. The individual cell gives 0.9 A short circuit current and 0.60 circuit voltage. The temperature coefficients for short circuit current, ope voltage and peak power are +0.045 %/K, -0.34%/K, and -0.47%/K respectively.	olar cells and the maximum 5 V open en circuit	[5]	CO2	BL5
	Evaluate the maximum power that can be drawn from the solar module, fill for efficiency of the solar cell at the temperature of 40° C?	actor and			
Q.4(a) Q.4(b)	Explain why PV is not a voltage source? Discuss and draw the i-v characteristics along with power curve for two non PV cells connected in parallel without and with protection measures.	-identical	[2] [3]	CO2 CO2	BL2 BL3
Q.5(a) Q.5(b)	Design a PV emulator with the help of switched mode dc-dc converter. Analyze the operation of dc-dc power interface used for MPPT control of a P with suitable sketch and waveforms.	V module	[2] [3]	CO2 CO2	BL6 BL4

:::::02/03/2023:::::M