BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023) CLASS: BTECH SEMESTER : VI BRANCH: EEE SESSION : SP2023 SUBJECT: EE351 CONTROL THEORY TIME: FULL MARKS: 25 02 Hours **INSTRUCTIONS:** 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates _____ CO BL Q.1(a) Derive the transfer function of the system given in Figure 1. Represent the block [2] 1 1,3 diagram of the system. Q.1(b) Describe the effects of feedback [3] 1,3 2 on stability of a system (i) (ii) on sensitivity due to parameter variation in a system. Q.2(a) Define the following for SFG: loop, self loop, path gain, loop gain. [2] 1 1 Q.2(b) Apply Mason's gain formula to obtain the overall gain of the system from signal flow [3] 1 3 graph shown in Figure 2. G2 GI G3 42 ure -2 Q.3(a) Classify a system depending on the value of damping. [2] 3 1,2 Draw the nature of response of a 2nd order system with different types of (i) damping. Sketch the response of a 2^{nd} order underdamped system. (ii) Q.3(b) A unity feedback control system has open-loop transfer function [3] 1,3 3 10 G(s) = s(s+2)Determine the rise time, % overshoot, peak time and settling time for a step input of 12 volts.

PTO

Q.4(a)	The characteristic equation of a system is given by	[2]	1,3	3,6
	$s^4 + 20s^3 + 15s^2 + 2s + k = 0$			
	(i) Determine the range of k for the system to be stable.			
	(ii) Can the system be marginally stable? If so, determine the required value of			
	k and the frequency of oscillation.			
Q.4(b)	Construct the root locus of the system whose open-loop TF is	[3]	1,2,	3,5,6
	c(x) = k		3	
	$G(s) = \frac{1}{s(s+2)(s+4)}$			
	(i) Evaluate the value of k and frequency of oscillation, where the root locus			
	crosses the imaginary axis.			
	(ii) Determine the value of k so that the dominant pair of complex conjugate			
	poles of the system has a damping ratio of 0.5.			
Q.5(a)	Define frequency response of a system. Derive the expression of resonant frequency.	[2]	3	1,3
Q.5(b)	Construct the Bode plot for the unity feedback system which is given by	[3]	2,3	3,5,6
	1000			
	$G(s) = \frac{1}{(1+0.1s)(1+0.001s)}$			

Determine (i) gain margin (ii) phase margin (iii) assess stability of the system.

:::::22/02/2023:::::M