CLASS:	BTECH
BRANCH:	EEE

SEMESTER : IV
BRANCH: EEE
SESSION : SP/2023
SUBJECT: EE305 DIGITAL SIGNAL PROCESSING
TIME: 02 Hours
FULL MARKS: 25

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) The signal Cos (10m $t+\pi / 4$) is ideally sampled at a sampling frequency of 15 Hz . The sampled signal is passed through a filter with impulse response Sinc(t). Cos (40п $t-\pi / 2)$. Calculate the output of filter in time domain?
Q.1(b) A Continuous time signal $x(t)$ is represent as $x(t)=-1[1+\operatorname{Sgn}(t+2)]+1.5[1+\operatorname{Sgn}(t)]+$ $[1+\operatorname{Sgn}(t-2)]-2[1+\operatorname{Sgn}(t-4)]+0.5[1+\operatorname{Sgn}(t-5)]$ \{where $\operatorname{Sgn}(\mathrm{t})$ is Signum signal\}. The energy of signal $x(t)$ is ' X '. The energy of signal $y(t)=-x(-2 t+3)$ is ' Y '. The energy of signal $z(t)=-x(-4 t+5)$ is ' Z '. Calculate the ratio of $(X) /(Y Z)$. Also find the energy of $x(n)=\left(\frac{1}{3}\right)^{n} u(n)+\left(\frac{1}{5}\right)^{n} u(n)$.
Q.2(a) Consider a signal continuous time signal as shown in figure. If $x(t)$ has continuous Fourier transform is $X(\omega)$ then calculate the value of $\int_{-\infty}^{+\infty} \omega X(\omega) e^{-j 2.5 \omega} d \omega$.

Q.2(b) Given the finite length $x(n)$ and the corresponding finite length output $y(n)$ of a Linear Time Invariant system having impulse response $h(n)$. Where $x(n)=$ 0 , for $n<0, n>1$. $x(n)=\{1,-1\} ; y(n)=0$, for $n<-1, n>2 . y(n)=\{1,-1,1,-1\}$. The value of $h(1)=A$ and the length of $h(n)$ is equal to B. Find out the product of AxB. A discrete time signal $x(n)=e^{j\left(\frac{5 \pi}{3}\right)}+e^{j\left(\frac{\pi}{4}\right)}$ is down-sampled to the signal $x_{d}(n)=x(4 n)$. Evaluate the fundamental period of the down-sampled signal $x_{d}(n)$?
Q.3(a) Find the inverse Fourier transform of $X(\omega)$ for which the magnitude and phase spectra of $X(\omega)$ is given below in the figure.

Q.3(b) Let the signal $f_{1}(t)=\operatorname{Tri}[t], f_{2}(t)=\frac{d f_{1}(t)}{d t}$ and $x(t)=-2 f_{2}(t-3)$. Let $y(t)$ is the even part of signal and $z(t)$ is the odd part of the signal $x(t)$. Find the Fourier transform, and Laplace transform of signal $x(t)$. Find the Area of the $y(t) \& z(t)$

	CO	BL
$[2]$	$\mathrm{CO2}$	03
	C	
	CO	
$[3]$	$\mathrm{CO2}$	04
	CCO	

[2] CO1
02 \&CO2
[3] CO4 05
[2] CO 3 \& CO4
[3] CO4 6 \& CO5 signal.
Q.4(a) The following information about a signal $x(t)$: (i) $x(t)$ is a real. (ii) $x(t)$ is periodic with period $\mathrm{T}=6$ and has Fourier coefficients X_{n}. (iii) $X_{n}=0$ for $n=0$ and $n>2$.(iv) $x(t)=-x(t-3)$. (v) $\frac{1}{6} \int_{-3}^{3}|x(t)|^{2} d t=\frac{1}{2}$. (vi) X_{1} is a positive real number. Find $x(t)$.
Q.4(b) Let $x(n)$ be a periodic signal with period $\mathrm{N}=8$ and Fourier series coefficients $X_{k}=$ $-X_{k-4}$. A signal $y(n)=\left(\frac{1+(-1)^{n}}{2}\right) x(n-1)$ with period $\mathrm{N}=8$ is generated. Denoting the Fourier series coefficients of $y(n)$ be Y_{k}, Determine a function such that $Y_{k}=$ $f(k) X_{k}$.
Q.5(a) Find the inverse z-transform of $X(z)=\frac{3\left(1-z^{-1}\right)}{1-2.5 z^{-1}+z^{-2}}$ assuming that(i) the signal is causal and (ii) the signal has a DTFT.
Q.5(b) Given that $x(n)$ has Fourier transform $X\left(e^{j \omega}\right)$, express the Fourier transform of the following signals in the terms of $X\left(e^{j \omega}\right)$. (i) $x_{1}(n)=(n-1)^{2} x(n)$ (ii) $x_{2}(n)=$ $e^{j\left(\frac{\pi}{2}\right) n} x(n+2)$

Determine the inverse DTFT of

$$
X\left(e^{j \omega}\right)=\frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}},|\alpha|<1
$$

[2
[3] CO 2
[2] CO1
[3] CO4
\&CO4 \& CO3 \& CO2

