BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BRANCH:	BTECH EEE	(SEMESTER : IV SESSION : SP/2023
TIME:	02 Hours	SUBJECT: EE305 DIGITAL SIGNAL PROCESSING	FULL MARKS: 25
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 			

- Q.1(a)The signal Cos $(10\pi t + \pi/4)$ is ideally sampled at a sampling frequency of 15 Hz.[2]CO203The sampled signal is passed through a filter with impulse response Sinc(t). Cos (40π) &&t $\pi/2$). Calculate the output of filter in time domain?CO3Q.1(b)A Continuous time signal x(t) is represent as x(t) = -1[1+Sgn(t+2)] + 1.5[1+Sgn(t)] + [3]CO204
- $\begin{array}{l} (1+Sgn(t-2)] & -x \ (-4t+5) \ is \ 'Z'. \ Calculate the ratio of \ {X} \ /(YZ). \ Also find the energy of \ x(n) = \left(\frac{1}{3}\right)^n u(n) + \left(\frac{1}{5}\right)^n u(n). \end{array}$
- Q.2(a) Consider a signal continuous time signal as shown in figure. If x(t) has continuous [2] CO1 02 Fourier transform is X(ω) then calculate the value of $\int_{-\infty}^{+\infty} \omega X(\omega) e^{-j2.5\omega} d\omega$.

- Q.2(b) Given the finite length x(n) and the corresponding finite length output y(n) of a [3] CO4 05 Linear Time Invariant system having impulse response h(n). Where x(n) = 0, for n < 0, n > 1. $x(n) = \{1, -1\}$; y(n) = 0, for n < -1, n > 2. $y(n) = \{1, -1, 1, 1, -1\}$. The value of h(1) = A and the length of h(n) is equal to B. Find out the product of AxB. A discrete time signal $x(n) = e^{j(\frac{5\pi}{3})} + e^{j(\frac{\pi}{4})}$ is down-sampled to the signal $x_d(n) = x(4n)$. Evaluate the fundamental period of the down-sampled signal $x_d(n)$?
- Q.3(a) Find the inverse Fourier transform of $X(\omega)$ for which the magnitude and phase [2] CO3 spectra of $X(\omega)$ is given below in the figure. &

с04

CO

ΒL

Q.3(b) Let the signal $f_1(t) = Tri[t], f_2(t) = \frac{df_1(t)}{dt}$ and $x(t) = -2f_2(t-3)$. Let y(t) is the [3] CO4 6 even part of signal and z(t) is the odd part of the signal x(t). Find the Fourier transform, and Laplace transform of signal x(t). Find the Area of the y(t) & z(t) CO5 signal.

- Q.4(a) The following information about a signal x(t): (i) x(t) is a real. (ii) x(t) is periodic [2] CO3 4 &C04
- with period T=6 and has Fourier coefficients X_n . (ii) $X_n = 0$ for n = 0 and n > 2.(iv) x(t) = -x(t-3). (v) $\frac{1}{6} \int_{-3}^{3} |x(t)|^2 dt = \frac{1}{2}$. (vi) X_1 is a positive real number. Find x(t). Let x(n) be a periodic signal with period N = 8 and Fourier series coefficients $X_k = -X_{k-4}$. A signal $y(n) = \left(\frac{1+(-1)^n}{2}\right)x(n-1)$ with period N = 8 is generated. Denoting the Fourier series coefficients of y(n) be Y_k , Determine a function such that $Y_k = f(t) Y_k$ [3] Q.4(b) CO2 3 £t CO3 $f(k) X_k$.
- Find the inverse z-transform of $X(z) = \frac{3(1-z^{-1})}{1-2.5z^{-1}+z^{-2}}$ assuming that(i) the signal is [2] causal and (ii) the signal has a DTFT. CO1 Q.5(a) 2 £t CO2
- Given that x(n) has Fourier transform $X(e^{j\omega})$, express the Fourier transform of the [3] following signals in the terms of $X(e^{j\omega})$. (i) $x_1(n) = (n-1)^2 x(n)$ (ii) $x_2(n) =$ Q.5(b) CO4 4 $e^{j\left(\frac{\pi}{2}\right)n}x(n+2)$

Determine the inverse DTFT of

$$X(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})^2}, |\alpha| < 1$$

:::::23/02/2023:::::M