BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

	(END SEMESTER EXAMINATION)									
CLASS: BRANCH	B.Tech. : EEE		SEM SESS	ESTER: SION: SF	IV 9/2023					
TIME:	3 Hours	SUBJECT: EE305 DIGITAL SIGNAL PROCESSING	FULL MARKS: 50							
INSTRUC 1. The q 2. Atten 3. The n 4. Befor 5. Table	TIONS: Juestion paper con opt all questions. nissing data, if any e attempting the s/Data handbook/	ntains 5 questions each of 10 marks and total 50 marks. y, may be assumed suitably. question paper, be sure that you have got the correct qu Graph paper etc. to be supplied to the candidates in the	iestion p examin	oaper. ation ha	all.					
Q.1(a)	Consider the sigr formed. Determin	hal $x(t) = e^{j120\pi t} + e^{j360\pi t}$. The signal $y(t) = x(5t - 25)$ is the the Nyquist sampling rate of $y(t)$.	Marks [2]	CO 01 & 02	BL 03					
Q.1(b)	Let $X(\omega)$ is the Fourier transform of signal $x(t)$.		[3]	01, 02 &03	03					
	If $\int_{-\infty}^{+\infty} X(\omega) ^2 d\omega = \alpha + \beta$.	= α and $\int_{-\infty}^{+\infty} X(\omega) e^{j0.5\omega} d\omega = \beta$. Determine the value of								
Q.1(c)	The transfer func- the system is $x(x) = \frac{1}{0}$ function $H(z) = \frac{1}{0}$	tion of a causal LTI system is $H(s) = 1/s$. If the input to $t) = \left[\frac{\sin(t)}{\pi t}\right] u(t)$. Estimate the system output $y(t)$ as $t \rightarrow$ direct Form II realization for third order IIR transfer $\frac{0.28z^2+0.319z+0.04}{5z^3+0.3z^2+0.17z-0.2}$.	[5]	03 & 04	04					
Q.2(a)	Determine the z-t $x(n) = 0.5[n^2 + 2]$	Transform of $X(z)$ of the signal. $n!(0.5)^{n-1}u(n-1)$	[2]	02 &03	04					
Q.2(b)	Let $x(n) = \{2, 5, 0, 4\}$ and $h(n) = \{4, 1, 3\}$. Perform the linear convolution using circular convolution. Consider $Y(k)$ be a 14-point DFT of a length-14 real sequence $y(n)$. The first eight samples are given by $Y(0) = 12$, $Y(1) = -1 + j3$, $Y(2) = 3 + j4$, $Y(3) = 1 - j5$, $Y(4) = -2 + j2$, $Y(5) = 6 + j3$, $Y(6) = -2 - j3$ and $Y(7) = 10$. Evaluate the function $\Sigma^{13} e^{\frac{j4\pi n}{2}} y(n)$			04	05					
Q.2(c)	Compute the 8-pc algorithm. Show a	bint DFT of the sequence $x(n) = \cos\left(\frac{n\pi}{2}\right)$ using the DIT-FFT all the intermediate values.	[5]	03	04					
Q.3(a)	Write the con Transformation te	nparison between Impulse Invariant and Bilinear echnique.	[2]	01	02					
Q.3(b)	Obtain the recursi the key properties	[3]	03	04						

Q.3(c)	Design an HPF with the following specifications:	[5]	05	05,06
	$Passband: 0.8 \le \left H(e^{j\omega}) \right \le 1 \qquad 0.7\pi \le \omega \le \pi$			
	Stopband: $ H(e^{j\omega}) \le 0.2$ $0 \le \omega \le 0.2\pi$			
	Design the IIR filter using Bilinear Transformation method. Assume a Butterworth characteristic for the filter and $T=1$ s.			
Q.4(a)	Compare the differences between Finite Impulse response and Infinite Impulse response filters?	[2]	03	04
Q.4(b)	Obtain the transfer function and impulse response of a causal Type-3 linear- phase FIR filter of minimum length if it has a zero at $z = j$ and two zeros at $z = 1$.	[3]	04	03,04
Q.4(c)	Determine the frequency response (DTFT) of the Causal Rectangular window. Using a rectangular window, design a causal LPF with a pass-band gain of unity, cut-off frequency of 1000 Hz, and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 7.	[5]	05	05,06
Q.5(a)	Describe Barrel shifter? Implement 4-bit shift right barrel shifter.	[2]	01 & 02	02
Q.5(b)	Explain the various addressing modes used in DSP processors.	[3]	01 & 02	02
Q.5(c)	Explain the TMS320C family. Differentiate between fixed-point and floating-point DSP processors.	[5]	03	04

:::::27/04/2023 M:::::