BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH: TIME:		BTECH SE EEE SUBJECT: EE251 DC MACHINES AND TRANSFORMER 02 Hours FU			EMESTER : IV ESSION : SP2023 ULL MARKS: 25		
Q1	(a) (b)	While drawing a phasor diagram of an ideal transformer, the flux vector is drawn 90° out of phase (lagging) to the supply voltage. Why? A power transformer has 1000 primary turns and 100 secondary turns. The cross sectional area of the core is 6 sq. cm, and the maximum flux density while in operation is 10 000 Gauss. Calculate turns per volt for the primary and secondary windings.	[2] - [3]	CO 1, 2, 3 1, 2, 3, 4, 5	BL 2 4		
Q2	(a)	Even at no-load, a transformer draws current from the mains. Why?	[2]	1, 2, 3 5	2		
	(b)	Explain, "The main flux in a transformer remains practically invariable under all load conditions."	[3]	1, 2	2		
Q3		When OC Test and SC Test were performed on a 50 kVA transformer, the following results were obtained: Open circuit tests: Primary voltage 3300 V, Secondary voltage 415 V, Power 430 W Short circuit test: Primary voltage 124 V, Primary current 15.3 A, Primary Power 525 W Secondary Current full load value.	; [5] ;	1, 2, 3, 4, 5	4		
		 (a) The efficiency at full-load and at half-load for 0.7 power factor. (b) The voltage regulation for power factor 0.7: (i) lagging, (ii) leading (c) The secondary terminal voltages corresponding to (i) and (ii). 					
Q4	(a)	What is the difference between a 3-phase transformer bank and a 3-phase transformer unit? What are the advantages of a three-phase unit transformer over three single phase transformer bank of the same kVA rating?	- [2]	1, 2, 3 5	2		
	(b)	What is meant by three-phase transformer groups? What are the possible connections for a 3-phase transformer bank?	; [3]	3, 5 1, 2, 3, 5	1		
Q5	(a)	What are the conditions for satisfactory parallel operation of a 3-phase transformer?	[2]	1,	1		
	(b)	A load of 500 A, at 0.8 power (lagging), at a terminal voltage of 400 V, is supplied by two transformers that are connected in parallel. The equivalent impedances of the two transformers, referred to the secondary sides, are $(2 + j3)$ ohm and $(2.5 + j5)$ ohm respectively. Calculate the current and kVA supplied by each transformer and the power factor at which they operate.	/ [3]	1, 2, 3, 4, 5	4		

:::::21/02/2023:::::M