BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	B.Tech. EEE		SEMESTER: IV SESSION: SP/2023		
TIME:	3 Hours	SUBJECT: EE251 DC MACHINES AND TRANSFORMER	FULL MARKS: 50		50
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Tables	TIONS: uestion paper on opt all questions nissing data, if a e attempting th s/Data hand boo	contains 5 questions each of 10 marks and total 50 marks. s. any, may be assumed suitably. le question paper, be sure that you have got the correct question ok/Graph paper etc. to be supplied to the candidates in the exam	n pape ninatic	er. on hall	
Q.1(a)	i. Explair curren ii. Why is	n why the core flux in a transformer is almost independent of load t. the short circuit test generally performed at the reduced voltage	[5]	CO 1, 3, 5	BL 3
Q.1(b)	on the The parameter $R_1 = 0.2 \Omega$ $X_1 = 0.45 \Omega$ $R_i = 10.0 k\Omega$ a) Draw the c b) Determine supplying f voltage.	high voltage side? s of the equivalent circuit of 150 kVA, 2400/240 V transformer are: $R_2 = 2x10^{-3} \Omega$ $X_2 = 4.5x10^{-3} \Omega$ $X_m = 1.6 k\Omega$ (as seen from 2400 V side) ircuit model as seen from the HV side. the voltage regulation and efficiency when the transformer is full load at 0.8 lagging power factor on the secondary side at rated	[5]	3, 4, 5	4

- Q.2(a) Draw the phasor diagram of a transformer as seen from any one side for zero [5] 1, 2 1 voltage regulation.
- Q.2(b) The figure shows two 1-phase ideal transformers T_1 and T_2 connected with their [5] 3, 4 primaries in parallel across a source. For R=10 ohm, determine the current taken 4, 5 from the source, primary input impedance, and power input.

- Q.3(a) Draw a neat diagram of a 4-pole DC machine. Label all its parts and mention the [5] 1, 2 material used for each part. What are the two functions of a commutator in DC 2, 5 machines?
- Q.3(b)Draw the developed winding diagram of a progressive lap winding for 4-pole, 16 [5] 1,2, 6slots single layer showing the position of poles, the direction of motion, thedirection of induced emf, and the position of brushes.5

- Q.4(a) Sketch and explain the load characteristics of a DC shunt, series, and compounded [5] 1,2, generator. What do you mean by cumulative and differential compounding? 3,5
- Q.4(b) A DC generator is connected to 220 V DC mains. The current delivered by the 1,3, [5] generator to the mains is 100 A. The armature resistance is 0.1 ohm. The generator is driven at a speed of 500 rpm. Calculate:
 - (i) the induced emf
 - (ii) the electromagnetic torque
 - (iii) the mechanical power input to the armature neglecting iron, winding, and friction losses,
 - (iv) Electrical power output from the armature,
 - (v) armature copper loss.
- Q.5(a) Derive the torque equation of a DC motor.

[4] 2,3 3 4

4,5

2

4

A 250 V, 20 kW shunt motor running at 1500 rpm has a maximum efficiency of 85% Q.5(b) [6] 3, 4 when delivering 80% of its rated output. The resistance of the shunt field winding is 125 ohms. Determine the speed of the motor when it draws 100 A from the mains.

:::::25/04/2023:::::M