BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	B.TECH CSE/AIML/ECE/EEE	SEMESTER : II SESSION : SP/2023
TIME:	SUBJECT: EE101 BASICS OF ELECTRICAL ENGINEERING 3 Hours	FULL MARKS: 50
INSTRUCT 1. The qu 2. Attemp	IONS: estion paper contains 5 questions each of 10 marks and total 50 marks. t all questions.	
3. The mi	ssing data, if any, may be assumed suitably.	
4. Before	attempting the question paper, be sure that you have got the correct qu	estion paper.
E Tables	Data hand hack/Cranh paper ate to be supplied to the candidates in the	avamination hall

5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination nail.

CO BL

Q.1(a) The dependent current source I_d is related to the voltage V_{ab} in Fig. 1 through the [5] CO1 3 relation $I_d = 0.4 V_{ab}$. Evaluate the current through the 8 Ohm resistor by nodal analysis.

- Q.1(b) A steel ring 25 cm diameter and of circular section with thickness of 3cm in [5] CO1 5 diameter has an air gap of 1.5 mm. If it is wound uniformly with 750 turns of conductor carrying current of 2.1 A, then Evaluate : (i) mmf, (ii) magnetic flux, (iii) magnetic flux density in air gap,(iv) relative permeability of steel ring. Assume that the steel section takes 35% of the total mmf.
- Q.2(a) Two elements based series circuit consumes 700 W and has power factor of 0.707 [5] CO2 2 (leading). If the applied voltage is $v = 141\sin(314t + 30^{\circ})$, obtain the circuit constants.
- Q.2(b) (i) An alternating voltage is given by equation $v = 282.84 \sin(377t + \frac{\pi}{6})$

[3]

2

£

5

Obtain (a) rms value, (b) frequency, (c) time period.

(ii) A series resonant circuit has an impedance of 500 Ohm at resonant frequency and cut-off frequencies are 10 kHz and 100 kHz respectively. Evaluate (a) the resonance frequency, (b) values of R, L and C, (c) quality factor at resonant frequency.

- Q.3(a) Three impedances each of resistance 10 Ohms and series inductive reactance of 5 [5] CO3 2 Ohms are connected in (i) Star (ii) Delta across a three phase 400 V supply. Obtain the line current in each case and the total power.
- Q.3(b) A delta-connected load is arranged as in Fig. 2. The supply voltage is 400 V at 50 [5] CO3 5
 Hz. Appraise: (a) the phase currents, (b) the line currents, (c) phasor diagram for line and phase currents.

Q.4(a) Use Thevenin's theorem to determine the current through the variable load [5] CO4 3 resistor as in Fig. 3 when (i) R_L = 1 Ohm, (ii) R_L = 3 Ohms

Fig. 3

- Q.4(b) Two similar coils have a coupling co-efficient of 0.2. When they are connected in [5] CO1 3 series, cumulatively, the total inductance is 120 mH. Calculate
 - a) The self-inductance of each coil.
 - b) The total inductance when the coils are connected in series differentially.
 - c) The total magnetic energy due to current of 3A when the coils are connected in series: (i) cumulatively, (ii) differentially.
- Q.5(a) Enlist at-least two major equipments for power transfer? Explain the construction [5] CO5 2 and working principle of single phase transformer.
- Q.5(b) Each phase of a 3-phase, Δ -connected load consists of an impedance $Z = 20 \angle 60^{\circ}$ [5] CO3 2 Ohms. The line voltage is 440 V at 50 Hz. Evaluate the power consumed by each of the phase impedances and the total power. Obtain the readings of the two CO5 wattmeters connected.

:::::20/07/2023:::::