BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(MID SEMESTER EXAMINATION SP2023)
CLASS: BTECH
BRANCH: CSE/AI\&ML/ECE/EEE
SEMESTER: II
SESSION : SP/2023
SUBJECT: EE101 BASIC OF ELECTRICAL ENGINEERING
TIME:
02 Hours
FULL MARKS: 25

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
\qquad
CO BL
1.(a) A bridge network $A B C D$ is shown as in Fig. 1. Evaluate by star/delta transformation, $2.5 \quad$ CO1 BL3 the network resistance as viewed from the battery terminals.

Fig. 1
1.(b) Evaluate the current i and also the power and voltage of the dependent source in Fig. $2.5 \quad$ CO1 BL3 2. All resistances are in ohms.

Fig. 2
2. Evaluate the current I, by altering the two voltage sources to equivalent current $5 \quad$ CO1 BL3 sources and then apply Nodal Analysis for the Fig. 3

Fig. 3
3. Analyze the three mesh currents as in Fig. 4 using Super-Mesh Principle.

4.(a) When AC is passed through a pure inductor or capacitor, derive and justify why the $2.5 \quad$ CO2 BL3 average power consumed by a pure inductor or capacitor is zero? Also attain the maximum instantaneous power for any one of the loads.
4.(b) For RL Series circuit attain the voltage triangle, impedance triangle and power
triangle. Determine what will be observed in power consumption of the network, if p.f. is varied?
5.(a) Analyze the RMS Value, Average Value , Form Factor and Peak Factor of the current 2 waveform as in Fig. 5.

Fig. 5
5.(b) A tungsten filament bulb rated at $500 \mathrm{~W}, 100 \mathrm{~V}$ is to be connected in series with a $3 \quad$ CO2 BL3 capacitor. The supply being $220 \mathrm{~V}, 50 \mathrm{~Hz}$. Estimate :
(i) The value of the capacitor such that the voltage and power consumed by the bulb are according to the rating of the bulb.
(ii) The power factor of the current drawn from the supply.
(iii) The phasor diagram of the circuit.

