BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/SP2023)

CLASS: BRANCH:	IMSc. QEDS		SEMESTER: IV SESSION: SP/2023
TIME:	02 Hours	SUBJECT: ED217 STOCHASTIC PROCESS	ESS FULL MARKS: 25
INSTRUCT 1. The que 2. Attemp 3. The mis 4. Tables/	IONS: estion paper con t all questions. ssing data, if any Data handbook/(tains 5 questions each of 5 marks and total , may be assumed suitably. Graph paper etc., if applicable, will be supp	l 25 marks. plied to the candidates

Q.1(a) Describe Markov chain with some real-life examples. Consider a Markov chain with the [2] CO1 state space $S = \{1, 2, 3\}$ and transition probability matrix 0

$$\mathbf{P} = \begin{array}{ccc} 1 & 2 & 3 \\ 0.7 & 0.1 & 0.2 \\ 0.0 & 0.6 & 0.4 \\ 0.5 & 0.2 & 0.3 \end{array} \right].$$

-1

Calculate P(X3 = 1 | X0 = 1, X1 = 2, X2 = 3) and P(X0 = 1, X1 = 2, X2 = 3)

Q.1(b) Describe Chapman-Kolmogorov Equations and its significance in handling Markov Chain [3] CO1 problems. Calculate three step transition probability matrix of P given in 1(a).

[2] CO1 Q.2(a) Consider a Markov chain with the one-step transition probability matrix.

	1	2	3	4	5	
1	F 0.1	0.2	0.3	0	0.4	
2	0	0.5	0.5	0	0	
3	0	1	0	0	0	•
4	0	0	0	0	1	
5	0	0	0	0.6	0.4	

(i) Plot the diagram of the Markov chain.

(ii) Show that the chain is non-ergodic because there are two invariant probability measures. Which one of them is the stationary distribution?

- Q.2(b) Find all recurrent and transient classes and their periods. Are there any absorbing or [3] CO1 reflecting states?
- Q.3(a) Describe Random Walk and its categorization based on the transitions of the process. [2] CO1
- Q.3(b) In a random walk the probability that the walk advances by one step is p and retreats by [3] CO1 one step is q = 1-p. At step n let the position of the walker be the random variable X_n . If the walk starts at x = 0, enumerate all possible sample paths which lead to the value X_4 = -2. Verify that

$$\mathbf{P}[X_4 = -2] = \binom{4}{1} pq^3$$

1 >

[2] CO2 Q.4(a) Describe Poisson process & the conditions for a process to be a Poisson process.

Q.4(b) Explain the following diagram in reference to Poisson Process.

C02

[3]

CO

Q.5(a) A Himalayan view of winter might be described by the following transition matrix for a [2] CO2 weather Markov chain, where r, s, and c denote rain, snow, and clear, respectively.

$$P = \begin{matrix} r & s & c \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.6 & 0.3 \end{matrix} \right).$$

For tomorrow, the meteorologist predicts a 50% chance of snow and a 50% chance of rain. Evaluate the probability that it will snow 2 days later.

Q.5(b) A student visits an Ancient History Museum that is open between 9AM and 6PM. He enters [3] CO2 the museum at 9AM and wanders the rooms in a random-walk fashion, spending 30 minutes in each room, and then choosing a door at random. The museum floor plan is given in the picture.

Describe the expected number of transitions between the rooms until he reaches the exit.

:::::22/02/2023:::::M