BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH		EMESTER ESSION : S		3
TIME:	SUBJECT: ED213 OPTIMIZATION TECHNIQUES 02 Hours F	ULL MARI	MARKS: 25	
2. Atten 3. The r	TIONS: uestion paper contains 5 questions each of 5 marks and total 25 marks. npt all questions. nissing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates	;		
Q.1(a)	A factory is engaged in manufacturing two products A and B which involve lathe we grinding and assembling. The cutting, grinding, and assembling times required for one of A are 2, 1 and 1 hours respectively, and for one unit of B are 3, 1 and 3 hours respectively. The profits on each unit of A and B are \gtrless 2.00 and \gtrless 3.00 respectively. If hours of lathe time, 300 hours of grinding time and 240 hours of assembling time available, construct a linear programming model in terms of maximizing the profit on items to be manufactured.	unit ours 300 are	CO CO1	BL

- Q.1(b) Solve the Linear programming problem, constructed in Q1(a) using graphical method [2]
- Q.2(a) Using appropriate slack/surplus/artificial variables reduce the following problem in its [3] CO1 standard form with non-negative variables.

max $3x_1 + 2x_2 + 5x_3$; sub to $2x_1 - 3x_2 \le 3$, $4x_1 + 2x_2 - 4x_3 \ge 5$, $2x_1 + 3x_3 \le 2$; $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

- Q.2(b) Set up the initial simplex table to solve the problem in Q2(a) using Big-M method. [2]
- Q.3(a) State complementary slackness principle related to optimal solution of linear primal and [2] CO2 its dual optimization problems.
- Q.3(b) By solving dual of the following problem find the optimal solution of both the primal and [3] dual problems.

max $z = 2x_1 + 3x_2$; sub to $-x_1 + 2x_2 \le 4$, $x_1 + x_2 \le 6$, $x_1 + 3x_2 \le 9$; $x_1, x_2 \ge 0$

Q.4 For the following minimization type unbalanced transportation problem, obtain the initial [5] CO2 basic feasible solution by Vogel's approximation method.

	<i>W</i> ₁	<i>W</i> ₂	W_3	W_4	a _i
<i>P</i> ₁	3	8	7	4	30
P ₂	5	2	9	5	50
P ₃	4	3	6	2	80
b_j	20	60	55	40	

Q.5 A transportation company has the following problem. The supply (in truckloads), the [5] CO2 demand (also in truckloads) and the unit transportation cost (in hundreds of rupees) per truckload on the different routes are summarized below. The company has an initial shipping schedule: $x_{11} = 5$, $x_{14} = 2$, $x_{23} = 7$, $x_{24} = 2$, $x_{32} = 8$ and $x_{34} = 10$. Find the optimal shipping schedule between the silos and mills, and minimum transportation cost by Steppingstone algorithm.

			٨	Aills		
					IV	Supply
Silos	A	19	30	50	10	7
	В	70	30	40	60	9
	C	40	8	70	20	18
	Demands	5	8	7	14	