BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	I MSc. SEA QEDS SES										MESTER : IV SSION : SP/2023		
TIME:	SUBJECT: ED213 OPTIMIZATION TECHNIQUES 3 Hours FU									FUL	JLL MARKS: 50		
INSTRUCT 1. The qu 2. Attemp 3. The mis 4. Before 5. Tables/	IONS: estion pap it all quest ssing data, attempting Data hand	er cont ions. if any, g the qu book/C	ains 5 qu may be a uestion p Graph pap	estions e assumed aper, be per etc. t	each of suitabl sure th to be su	10 marks y. hat you ha upplied to	and tota ave got th the cano	al 50 ma he corre didates	arks. ect questio in the exa	on pa Imina	aper. ation ha	II.	
Q.1(a)	A salesman plans to visit five cities in such a way that he visits each city exactly once and return to the city from where he started . The distances between City <i>i</i> and City <i>j</i> (<i>i</i> , <i>j</i> \in {1, 2, 3, 4, 5}) are given in the following table. Find the shortest tour he can take using Hungarian method.										Marks	со	BL
		C	ity 1	City 2		City 3	City 4	1	City 5		r=1	600	
	City 1	0	0	2		5	7		1		[/]	C02	
	City 2	6		80		3	8		2				
	City 3	8		7		00	4		7				
	City 4	1	2	4		6	00		5				
	City 5			3		2	8		00				
Q1.(D)	Find the dual of the following problem. $\max x_1 + 2x_2 + x_3$ sub to $2x_1 + x_2 - x_3 \le 2$, $-2x_1 + x_2 - 5x_3 \ge -6$, $4x_1 + x_2 + x_3 \le 6$, $x_1, x_2, x_3 \ge 0$.										[3]	CO2	
Q.2	By using appropriate slack/surplus/artificial variables, solve the following linear programming problem. max $x_1 - x_2 + 3x_3$, sub to $x_1 + x_2 \le 20$, $x_1 + x_3 - 5$, $x_2 + x_3 \ge 10$, $x_1, x_2, x_3 \ge 0$.										[10]	CO1	
Q.3(a)	Perform two iterations of steepest descent method to minimize the function $f(x_1, x_2) = 2(2x_1^2 - 2x_1x_2 + x_2^2)$ with initial starting point $x_0 = (2, 3)$.									ion	[7]	CO3	
Q.3(b)	Find the number of experiments to be conducted in Fibonacci method to obtain a value of $\frac{L_n}{L_n} = 0.001$.									in a	[3]	CO3	
Q.4(a)	Consider the following optimal simplex table (neglecting the integer constraints for an integer linear programming problem. Find the integer solutions of both the variables $(x_1 \text{ and } x_2)$ using Gomory cutting plane method.												
	C _i	-		1	2	0	0	0					
	C _B	x_B	В	\mathbf{x}_{1}	x ₂	S 1	S 2	S2					
	1	\mathbf{x}_1	7/2	1	0	1	0	-1/2			[6]	C04	
	0	S 2	4	0	0	-2	1	1					
	2	x_2	7/2	0	1	0	0	1/2					
	$z_i - c_i$			0	0	1	0	1/2					
Q.4(b)	Write dov	wn the	steps to	solve a	n integ	ger linear	program	nming p	problem us	sing	[4]	C04	
_	Branch-Bo	ound tee	chniques.										
Q.5	Using dy programm	namic ning pro	program blem.	nming t	echniqu	ue, solve	e the f	followin	g non-lin	ear	[10]	CO5	
		r	$\max x_1 x_2 x_3$, sub to	$x_{2} + x_{2}$	$+x_{z}=10$). x ₁ .x ₂ .x ₃	, > 0.					

:::::24/04/2023:::::M