BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCI	(MID SEMESTER EXAMINATION SP2023) IMSc. H: QEDS		EMESTER: II ESSION: SP 2023		
SUBJECT: ED117 LINEAR ALGEBRA, VECTORS AND MATRICES					
TIME:02 HoursFULL MARKS: 25INSTRUCTIONS:1. The question paper contains 5 questions each of 5 marks and total 25 marks.2. Attempt all questions.3. The missing data, if any, may be assumed suitably.4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates5. All the notations used in the question paper have usual meanings.					
		Marks	CO	BL	
Q.1(a)	Define basis of a vector space. Determine whether the set $S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.	[3]	CO1		
Q.1(b)	Consider the subspaces $S = \{(x_1, x_2, x_3, x_4): x_2 - 2x_3 + x_4 = 0\}$ and $T = \{(x_1, x_2, x_3, x_4): x_1 = x_4, x_2 = 2x_3\}$ of \mathbb{R}^4 . Find the dimension of $S \cap T$.	[2]	C01		
Q.2(a)	Prove or give a counter example of the statement: Union of two subspaces of a vec space V is a subspace of V .	tor [3]	C01		
Q.2(b)	Let $V \subset \mathbb{R}$ be a set of all ordered pair of all real numbers with standard operation of addition and the scalar multiplication defined by $a(x_1, x_2) = (ax_1, 0)$. Show that V is NOT a vector space.		C01		
Q.3(a) Q.3(b)	Consider a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3), (x_1, x_2, x_2) \in \mathbb{R}^3$. Find $Ker(T)$ and $Nullity(T)$. A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, x_3)$	[3]	C01		
	$4x_3, x_1 - x_2 + 3x_3), (x_1, x_2, x_2) \in \mathbb{R}^3$. Find the matrix of <i>T</i> relative to the standard basis {(1,0,0), (0,1,0), (0,0,1)} of \mathbb{R}^3 .	asis [2]	C01		
Q.4	Determine the values of a and b for which the system of linear equations, given by $x + 2y + 3z = 6$, $x + 3y + 5z = 9$, $2x + 5y + az = b$ has (<i>i</i>) no solution (<i>ii</i>) Unisolution (<i>iii</i>) infinitely many solutions.		CO2		
Q.5(a)	Decompose the matrix $A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$ in form of $A = LU$, where L is a low	wer [3]	CO2		
Q.5(b)	triangular matrix and U is an upper triangular matrix. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ by using elementary row operations.	[2]	CO2		

:::::30/05/2023:::::M