BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP2023)

CLASS: BRANCH		SEMESTER: II SESSION: SP/2023			
SUBJECT: ED117 LINEAR ALGEBRA AND VECTORS & MATRICES TIME: 03 Hours FULL MARKS: 50 INSTRUCTIONS:					
 The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates All the notations used in the question paper have usual meanings. 					
0.44			Marks	со	BL
Q.1(a)	Determine the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis version $(0,1,1), (1,0,1), (1,1,0)$ of \mathbb{R}^3 to the vectors $(2,0,0), (0,2,0), (0,0,2)$ respectively.		[5]	C01	
Q.1(b) Q.2(a)	Verify rank-nullity theorem for the linear transformation, defined in Q.2(a). Find the value(s) of λ , for which the system of linear equations	[[5]	C01	
Q.2(a)	$x + y + z = 1, 2x + 3y - z = \lambda + 1, 2x + y + 5z = \lambda^2 + 1$ is consistent.	ſ	[4]	CO2	
Q.2(b)	Use Cayley-Hamilton theorem to compute A^{100} , where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.	I	[6]	CO3	
Q.3(a)	Define norm of a vector in a Euclidean space. For $\alpha = (0,3,4) \in \mathbb{R}^3$ find $ \alpha $ standard inner product defined in \mathbb{R}^3 .		[2+1]	CO3	
Q.3(b)	For any two vectors α, β in a Euclidean space <i>V</i> , prove the Schwarz's ineq $ \langle \alpha, \beta \rangle \leq \alpha \beta $, the equality holds when α, β are linearly dependent.		[7]	CO3	
Q.4(a)	Using Gram-Schmidt orthogonalization process convert the basis $\{(1,2,-2), (2,0,1), (1,1,0)\}$ of the Euclidean space \mathbb{R}^3 with standard inner product an orthogonal basis.		[6]	C04	
Q.4(b)	Consider the orthogonal basis { $(2,3,-1), (1,-2,-4), (2,-1,1)$ } of the Euclidean \mathbb{R}^3 with standard inner product. Find the projections of the vector $\alpha = (1,1,1)$ these basis vectors and verify that α is the sum of its projections along these vectors.	along	[3+1]	C04	
Q.5(a)	Reduce the quadratic form $2x^2 + 3y^2 + 4z^2 - 4xy + 4yz$ into its normal form. H check the positive definiteness of the quadratic form.		[4+1]	CO5	
Q.5(b)	Consider the matrix $A = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$. Show that 4 is an eigenvalue of the m Find the characteristic space corresponding to the eigenvalue 4.	natrix. [[2+3]	CO5	
	The the characteristic space corresponding to the eigenvalue 4.				

:::::21/07/2023:::::