BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH:	IMSc. CQEDS		SEMESTER : II SESSION : SP2023
		SUBJECT: ED113 STATISTICAL METHODS II	
TIME:	02 Hours		FULL MARKS: 25
INSTRUCTI	ONS:		
1. The que	estion paper con	tains 5 questions each of 5 marks and total 25 marks.	
2. Attemp	t all questions.	•	
3. The mis	sing data, if any	, may be assumed suitably.	
4. Tables/	Data handbook/0	raph paper etc., if applicable, will be supplied to the	e candidates

Q.1(a) One observation is taken on a discrete random variable with PMF $f(x; \theta)$; where $\theta \in [1,2,3]$. [2] Find maximum likelihood estimate (MLE) of θ . $f(x; \theta)$ is give below:

	x	0	1	2	3	4
f	(x; 1)	1/3	1/3	0	1/6	1/6
f	<i>(x</i> ; 2)	1/4	1/4	1/4	1/4	0
f	(x; 3)	0	0	1/4	1/2	1/4

[3]

[2]

[3]

Q.1(b) For a given random sample of size n from $Uniform(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, obtain the maximum likelihood ^[3] estimate (MLE) of θ .

- Q.2(a) Find minimum variance bound (MVB) estimator for the parameter θ of the distribution with PDF [2] $f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!}; x = 0,1,2,...$
- Q.2(b) State and prove Cramer Rao Inequality.
- Q.3(a) Let $X_1, X_2, \& X_3$ be a random sample from B(1, p). Prove/disprove that $T = X_1 + 2X_2 + X_3$ is [2] sufficient for p.
- Q.3(b) Let $X_1, X_2, ..., X_n$ be IID random variables having discrete uniform distribution on $\{1, 2, 3, ..., N\}$, [3] where N is unknown. Show that $Max(X_1, X_2, ..., X_n)$ is sufficient for N.
- Q.4(a) For Poisson distribution with parameter θ , find a consistent estimator for $\frac{1}{a}$. [2]

Q.4(b) Let $X_1, X_2, X_3 \& X_4$ be independent random variables such that $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ [3] for i = 1, 2, 3 & 4. Consider $Y = \frac{X_1 + X_2 + X_3 + X_4}{4}$; $T = \frac{X_1 + 2X_2 + X_3 - X_4}{4}$ and $Z = \frac{X_1 + 2X_2 + X_3 + X_4}{5}$. Examine whether Y, T and Z are unbiased estimator for μ . Find the most efficient estimator among three of them.

Q.5 Let $X_1, X_2, ..., X_n$ be a random sample from uniform distribution with PDF $f(x, \theta) = \frac{1}{\theta}; \quad 0 < x < \theta \quad \forall \quad \theta \in \Theta.$

Find

Q.5(a) Sufficient estimator for θ

Q.5(b) Unbiased estimator for θ

:::::25/05/2023:::::M