BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSc. I: QEDS						SE/	MESTER : II SSION : SP/20	023
		SU	BJECT: ED1	13 STATIST	ICAL METHO	DDS - II			
TIME:	3 Hours					FU	FULL MARKS: 50		
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIONS: question paper npt all questio nissing data, ir re attempting es/Data hand b	r contains 5 ns. f any, may t the question book/Graph	questions e be assumed n paper, be paper etc. t	each of 10 m suitably. sure that yo o be supplie	narks and to ou have got ed to the ca	tal 50 mark the correct ndidates in	s. question the exam	paper. ination hall.	
Q.1(a) Q.1(b)	If $x_0 = 5$ and $x_n = 3 x_{n-1} \mod 150$, find x_1, x_2, x_3, x_4 and x_5 . Give a method for generating a random variable having the density function. $f(x) = \frac{e^x}{(e-1)}, \ 0 \le x \le 1$.						[5] [5]		
Q.2(a)	Let $X_1, X_2,, X_n$ be normal random variables with mean μ and variance σ^2 . Find the method of								[5]
Q.2(b)	For the above problem find the maximum likelihood estimators of μ and σ^2 .							[5]	
Q.3(a)	A die is thrown 240 times, yielding the data in the following table:								[5]
	Score	1	2	3	4	5	6		

Frequency573928283652Perform a goodness of fit test for the hypothesis that the die is fair. $X^2_{4,0.05}$ = 9.488.

Q.3(b) A random sample of 60 printed circuit boards is taken and the number of defects is recorded. [5] The results are as follows.

Number of defects	Observed Frequency		
0	31		
1	15		
2	13		

Perform a goodness of fit test to determine whether the assumption of Poisson distribution seems appropriate as a model for these data. $X_{1,0.05}^2 = 3.841$.

[5]

[5]

- Q.4(a) State Factorization Theorem for sufficiency.
- Q.4(b) Let $X_1, X_2, ..., X_n$ be a random sample drawn form U(0, θ), where θ is unknown. Find the sufficient [5] statistic for θ .
- Q.5(a) Explain logit and probit regression models.
- Q.5(b) Suppose we collect data for a group of students in a statistics class with variables X_1 = hours [5] studied, X_2 = undergrad GPA, and Y = receive an A. We fit a logistic regression and produce estimated coefficient, $\hat{\beta}_0 = -6$, $\hat{\beta}_1 = 0.05$, $\hat{\beta}_2 = 1$. Estimate the probability that a student who studies for 40 h and has an undergrad GPA of 3.5 gets an A in the class.

:::::18/07/2023:::::