BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP2023)

<u>.</u>	(END SEMESTER EXAMINATION SP2023)			
CLASS: BRANCH		MESTER: II SSION: SP/202	3	
	SUBJECT: ED111 INTERMEDIATE ANALYSIS			
TIME:	03 Hours FL	JLL MARKS: 50		
INSTRUCTIONS: 1. The guestion paper contains 5 guestions each of 10 marks and total 50 marks.				
	npt all questions.			
3. The n	nissing data, if any, may be assumed suitably.			
	s/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates e notations used in the question paper have usual meanings.			
	70	Marks	CO	BL
Q.1(a)	Investigate the uniform continuity for the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{n^3(1+x^{2n})}, x \in \mathbb{R}.$	[5]	CO1	
Q.1(b)	Find the radius of convergence and the interval of convergence for the power s			
	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$	[5]	CO2	
Q.2(a)	Show that the function [x], where $\begin{bmatrix} n \\ 2 \end{bmatrix}$ is greatest integer not greater than a	x, is		
	Riemann integrable in [0,4] and find $\int_0^4 [x] dx$.	[5]	CO3	
Q.2(b)	Prove the following inequality.			
Q.2(0)		[5]	CO3	
	$\frac{1}{3\sqrt{2}} < \int_0^1 \frac{x^2}{\sqrt{1+x}} dx < \frac{1}{3}.$			
Q.3(a)	If $u = \sin^{-1}\left(\frac{x^3+y^3}{\sqrt{x}+\sqrt{y}}\right)$, then by Euler's theorem show that $xu_x + yu_y = \frac{5}{2}\tan u$.		6 0 1	
	$(\sqrt{x}+\sqrt{y})$	[5]	CO4	
Q.3(b)	Evaluate the Jacobian $\frac{\partial(u,v,w)}{\partial(r + \phi)}$, where $u = \sqrt{yz}$, $v = \sqrt{zx}$, $w = \sqrt{xy}$, and			
	$x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta.$	[5]	C04	
Q.4(a)	Consider the function $f(x, y) = \frac{x^2 y^2}{x^2 + y^2}$, $(x, y) \neq (0,0)$			
	= 0, (x, y) = (0, 0).	[5]	CO4	
	Check whether $f_{xy} = f_{yx}$ at (0,0).			
Q.4(b)	Investigate the continuity of the function $f(x, y) = 2xy \frac{x^2 - y^2}{x^2 + y^2}, (x, y) \neq (0, 0)$			
	= 0, (x, y) = (0, 0)	[5]	C04	
	at (0,0).			
Q.5(a)	Evaluate the double integral $\int \int_R x^2 dx dy$, where <i>R</i> is the region bounded by	the (F1)	COF	
	hyperbola $xy = 16$, and straight lines $y = x, y = 0, x = 8$.	[5]	CO5	
Q.5(b)	Find the integral $\int \int_R \sqrt{4a^2 - x^2 - y^2} dx dy$, where <i>R</i> is the region bounded by		CO5	
	upper half of the circle $x^2 + y^2 - 2ax = 0$, by transforming the integral into pola ordinates.			

:::::17/07/2023:::::M