

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH. : ECE	SEMESTER : II SESSION : SP/2023
TIME:	SUBJECT: EC581 ANALOG VLSI DESIGN 3 Hours	FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b)	Determine the voltage gain for a MOS source follower. Find the V _x and I _x for the given circuit. And sketch V _x and I _x as a function of time. Carrier mobility = μ_n , Oxide capacitance = C _{ox} , Width of the MOSFET = W, Length of the MOSFET = L, Threshold voltage = V _{th}	$ I_{X} \qquad [5] \\ I_{X} \qquad V_{X} \qquad [5] \\ I_{1} \qquad I_{2} \qquad C_{1} \qquad [5] $
Q.2(a)	What is the current mirror & what are its applications? What do you mean by Current Sink and Sources?	[5]

Q.2(b) Sketch V_X and V_Y as a function of time for the given circuit. Assume the transistors in each circuit are identical.

- Q.3(a) Determine the voltage gain of a Common source amplifier for high frequency application. - V_{DD} Neglecting other capacitances, calculate the input Q.3(b) impedance of each circuit shown in Figure. (V) 11
- Q.4(a)
- Determine $(V_{out1} V_{out2})$ as a function of $(V_{in1} V_{in2})$ for MOS differential pairs. [5] Determine the Common-mode response for MOS differential pairs in the presence of resistor [5] Q.4(b) mismatch.
- Q.5(a) What do you mean by Slew Rate, and CMRR? Draw the building block of Voltage Operational Amplifier?
- Q.5(b) Determine the output voltage of the following circuit.

C₂

C

[5]

 R_2 + vo Ξ

VDD

R₁ Y M₁

> [5] [5]

[5]