BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP/2023)

CLASS: B.TECH. SEMESTER: VI BRANCH: ECE SESSION: SP-2023

SUBJECT: EC365N MICROELECTRONIC DEVICES AND CIRCUITS

TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Descrite the important phenomena that occur in gate oxide layer due to high	Marks [5]	CO 1	BL 1, 2
Q.1(b)	field across it? Explain the mechanism of GIDL with suitable diagram. Explain effect of high field on drift velocity of electron in silicon. Substantiate your answer with suitable diagram.	[5]	1	2
Q.2(a)	Estimate the voltages V_1 , V_2 , V_3 , V_4 in the figure below given that the threshold voltage to be equal to 1 V and all these nodes have initially zero voltages.	[5]	2	2
Q.2(b)	Write down the derivation steps of long channel nMOS current model in linear and saturation region.	[5]	2	3
Q.3(a)	Define transition frequency $(f_{\rm t})$ and maximum oscillation frequency $(f_{\rm max})$ of a MOS transistor.	[5]	3	1
Q.3(b)	Sketch a small-signal MOS transistor equivalent circuit with source (S) and body (B) at different potentials.	[5]	3	3
Q.4(a)	Explain the principles and characteristics of current mirror? Schematize a basic CMOS current mirror circuit and derive its current gain or current transfer ratio.	[5]	4	4,6
Q.4(b)	Explain the application of current mirror as current-steering circuit. Substantiate your answer with suitable diagram.	[5]	4	4
Q.5(a)	Schematize the layout of 2-input NAND gate that has less drain area connected to the output node and explain how this layout improves gate performance.	[5]	5	6
Q.5(b)	The major sources of errors in realizing capacitors are due to over etching (which causes the area to be smaller than the area of the layout masks) and an oxide-thickness gradient across the surface of the microcircuit. Schematize a simplified layout of a capacitor array to minimize these errors. Explain how the errors are minimized.	[5]	5	6

:::::02/05/2023:::::M