BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BTECH SEMESTER: VI BRANCH: MECH/CSE/EEE/IT SESSION: SP/2023

SUBJECT: EC361 INTRODUCTION TO MEMS

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Give a brief history of MEMS development. What are the intrinsic characteristics	[2]	CO CO1	BL Remember
Q.1(b)	of MEMS? Derive the scaling law for static buoyancy force of a solid sphere in a liquid with a density of γ . Assume the sphere is made of a material with a density of γ_s ($\gamma_s < \gamma$).	[3]	CO1	Create
Q.2(a)	What are the different parameters that need to be considered while choosing a MEMS sensor? What are the various noises that can appear in a sensor and what are the origins of these noises?	[2]	CO1	Understand
Q.2(b)	A resistor is made of a suspended, doped polycrystalline silicon beam with the resistance being 5K. Calculate the resistor's Johnson noise when measured in a frequency range of 0 to 100 Hz and 0 to 10 KHz. The temperature of the resistor is 27°C and the bias voltage is 2 V.	[3]	C01	Evaluate
Q.3(a)	Explain some of the frequently used microfabrication processes. What do you mean by additive and subtractive processes? Give an example of each.	[2]	CO3	Remember
Q.3(b)	What is the difference between diffusion and drift of charge carriers in silicon? State the diffusion equation (Fick's law) explaining the various terms.	[3]	CO3	Analyse
Q.4(a)	Explain the difference between the conductivity of metals and semiconductors. How does the resistivity of resistors and semiconductors behave with temperature?	[2]	CO2	Understand
Q.4(b)	State the expression for the calculation of charge carriers in an intrinsic semiconductor. Explain the various terms involved.	[3]	CO2	Remember
Q.5(a)	Define stress and strain. What are the various factors in MEMS components that can lead to stress and strain?	[2]	CO5	Understand
Q.5(b)	A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1 mm long and $100~\mu m$ in diameter. Find the stress and strain in the longitudinal direction of the rod.	[3]	CO5	Analyse

:::::27/02/2023:::::M